2004
Volume 113, Issue 1
  • ISSN: 0002-5275
  • E-ISSN: 2352-1244

Abstract

Abstract

In the middle of the 19th century, Gregor Mendel performed a series of crosses with pea plants to investigate how hybrids are formed. Decades later, Thomas Hunt Morgan finalized the theory of classical genetics. An important aspect of Mendel’s and Morgan’s scientific approach is that they worked in a systematic, experimental fashion. But how did these experiments proceed? What is the relation between these experiments and Mendel’s and Morgan’s explanatory theories? What was their evidential value? Using present-day insights in the nature of experimentation I will show that the answer to these questions is fascinating but not obvious. Crossings in classical genetics lacked a crucial feature of traditional experiments for causal discovery: manipulation of the purported causes. Hence they were not traditional, ‘manipulative’ experiments, but ‘selective experiments’.

Loading

Article metrics loading...

/content/journals/10.5117/ANTW2021.1.005.LEUR
2021-02-01
2022-01-26
Loading full text...

Full text loading...

References

  1. Balzer, W. en Lorenzano, P.(2000). ‘The logical structure of classical genetics’, Journal for General Philosophy of Science, 31(2):243-266.
    [Google Scholar]
  2. Balzer, W., Moulines, C.U. en Sneed, J.D.(1987). An Architectonic for Science. The Structuralist Program. Reidel, Dordrecht.
  3. Correns, C. (1966/1900). ‘G. Mendel’s Laws concerning the behavior of progeny of varietal hybrids.’ In Stern and Sherwood (1966), pp.119-132.
    [Google Scholar]
  4. Darden, L.(1991). Theory Change in Science: Strategies from Mendelian Genetics. Oxford University Press, Oxford.
  5. de Vries, H. (1966/1900). ‘The law of segregation of hybrids’. [Das Spaltungsgesetz der Bastarde (Preliminary communication)]. In Stern and Sherwood (1966), pp.107-117.
    [Google Scholar]
  6. Foraita, R., Spallek, J. en ZeebH.(2014), ‘Directed acyclic graphs.’ In Ahrens, W. en Pigeot, I., editors, Handbook of Epidemiology, 2de editie, pp. 1481-1517. Springer, New York.
    [Google Scholar]
  7. Leuridan, B.(2007). ‘Galton’s blinding glasses. Modern statistics hiding causal structure in early theories of inheritance.’ In Russo, F. en Williamson, J., editors, Causality and Probability in the Sciences, Texts In Philosophy series, pp.243-262. College Publications, London.
    [Google Scholar]
  8. (2012). ‘Three problems for the mutual manipulability account of constitutive relevance in mechanisms’, The British Journal for the Philosophy of Science, 63(2): pp.399-427.
    [Google Scholar]
  9. (2014). ‘The structure of scientific theories, explanation, and unification. A causal-structural account’, The British Journal for the Philosophy of Science65(4): pp.717-771.
    [Google Scholar]
  10. Leuridan, B. en Lodewyckx, T.(2019). ‘Causality and time: An introductory typology’. In: Kleinberg, S. (ed.), Time and Causality across the Sciences. Cambridge: Cambridge University Press, pp.14-36.
    [Google Scholar]
  11. — (2020). ‘Diachronic causal constitutive relations’, Synthese, DOI:10.1007/s11229‑020‑02616‑0.
    [Google Scholar]
  12. Leuridan, B., Weber, E., en Van Dyck, M.(2008). ‘The practical value of spurious correlations: selective versus manipulative policy’, Analysis68: 298-303.
    [Google Scholar]
  13. Meijer, O.G.(1983). ‘The essence of Mendel’s discovery’. In Orel, V. en Matalová, A., editors, Gregor Mendel and the Foundation of Genetics, pp.123-178. The Mendelianum of the Moravian Museum, Brno.
    [Google Scholar]
  14. Mendel, G. (1866a). ‘Versuche über Pflanzenhybriden’. Separatabdruck aus dem IV. Bande der Verhandlungen des naturforschenden Vereines (im Verlage des Vereines). Brünn, 1866.
    [Google Scholar]
  15. — (1966/1866b). ‘Experiments on plant hybrids’. In Stern and Sherwood(1966), pp.1-48.
    [Google Scholar]
  16. Morgan, T.H.(1909). ‘What are ‘Factors’ in Mendelian Explanations?’, American Breeders Association Reports, 5: 365-368.
    [Google Scholar]
  17. — (1926/1928). The Theory of the Gene. Yale University Press, New Haven, revised and enlarged edition.
  18. Pearl, J.(2000). Causality. Models, Reasoning, and Inference. Cambridge University Press, Cambridge.
  19. (2014). ‘The deductive approach to causal inference’, Journal of Causal Inference2(2): 115-129.
    [Google Scholar]
  20. Simunek, M., Hoßfeld, U. en Wissemann, V.(2011), ‘‘Rediscovery’ revised – the cooperation of Erich and Armin von Tschermak-Seysenegg in the context of the ‘rediscovery’ of Mendel’s laws in 1899-1901.’Plant Biology13: 835-841.
    [Google Scholar]
  21. Spirtes, P., Glymour, C., en Scheines, R.(2000). Causation, Prediction, and Search. MIT Press, Cambridge, Massachusetts.
  22. Stern, C. en Sherwood, E.R., editors (1966). The Origin of Genetics: A Mendel Source Book. Freeman, San Francisco.
  23. Tanghe, K.B.(2015). ‘Mendel at the sesquicentennial of ‘Versuche über Pflanzen-Hybriden’ (1865): the root of the biggest legend in the history of science.’Endeavour39(2): 106-115.
    [Google Scholar]
  24. Theunissen, B.(2013). ‘Wie ontdekte de wetten van Mendel?’ In: Van Speybroeck, L. en Braeckman, J. (eds). Fascinerend Leven: Markante Figuren en Ideeën uit de Geschiedenis van de Biologie, Academia Press, Gent, pp.301-322.
    [Google Scholar]
  25. Woodward, J.(2003). Making Things Happen. A Theory of Causal Explanation. Oxford University Press, New York.
http://instance.metastore.ingenta.com/content/journals/10.5117/ANTW2021.1.005.LEUR
Loading
/content/journals/10.5117/ANTW2021.1.005.LEUR
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): causal discovery; experiments; genetics; Gregor Mendel; Thomas Hunt Morgan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error