Het complexe verhaal van de wiskunde in de Tractatus | Amsterdam University Press Journals Online
2004
Volume 115, Issue 2
  • ISSN: 0002-5275
  • E-ISSN: 2352-1244

Abstract

Abstract:

In this paper some thoughts are presented about the treatment of mathematics in the of Ludwig Wittgenstein. After introducing a metaphor for the mathematical ‘building’, we look at the scattered ideas about mathematics in the itself. Although the general consensus is that Wittgenstein rejects the entire ‘building’, there are recent insights that suggest that a more coherent view of ‘Tractarian’ mathematics can be presented, if we are willing to leave behind a foundational form of thinking. What this means will be outlined in some detail. The concluding general assessment is that the final word on the status of mathematics in the is still pending.

Loading

Article metrics loading...

/content/journals/10.5117/ANTW2023.2.007.BEND
2023-05-01
2024-06-20
Loading full text...

Full text loading...

References

  1. Bagaria, J. (2019) Set Theory, The Stanford Encyclopedia of Philosophy (Winter 2021 Edition), Edward N.Zalta (ed.), url = https://plato.stanford.edu/archives/win2021/entries/set-theory/, geraadpleegd op 2augustus2022.
    [Google Scholar]
  2. Beeson, M. (1985) Foundations of Constructive Mathematics, New York: Springer.
    [Google Scholar]
  3. Floyd, J. (2021) Wittgenstein’s Philosophy of Mathematics, Cambridge: Cambridge University Press.
    [Google Scholar]
  4. Fogelin, R. (1982) Wittgenstein’s operator N, Analysis, 42, pp. 124–127.
    [Google Scholar]
  5. Frascolla, P. (1994) Wittgenstein’s Philosophy of Mathematics, Londen: Routledge.
    [Google Scholar]
  6. Geach, P. (1981) Wittgenstein’s operator N, Analysis, 41, pp. 168–171.
    [Google Scholar]
  7. Kline, M. (1980) Mathematics: The Loss of Certainty, New York: Oxford University Press.
    [Google Scholar]
  8. Landini, G. (2021) Tractarian Logicism: Operations, Numbers, Induction, The Review of Symbolic Logic, 14(4), pp. 973-1010.
    [Google Scholar]
  9. Ongaro, M. (2021) The Interpretation of Probability in the Tractatus Logico-Philosophicus, Wittgenstein-Studien, 12 (1), pp. 131-144.
    [Google Scholar]
  10. Rodych, V. (2018) Wittgenstein’s Philosophy of Mathematics, The Stanford Encyclopedia of Philosophy (Spring 2018 Edition), Edward N.Zalta (ed.), url = https://plato.stanford.edu/archives/spr2018/entries/wittgenstein-mathematics/, geraadpleegd op 5augustus2022.
    [Google Scholar]
  11. Sheffer, H.M. (1913) A Set of Five Independent Postulates for Boolean Algebras, with Application to Logical Constants, Transactions of the American Mathematical Society, 14(4), pp. 481-488.
    [Google Scholar]
  12. Van Bendegem, J.P. (2018) The who and what of the philosophy of mathematical practices, in: P.Ernest (ed.), The Philosophy of Mathematics Education Today, New York: Springer, pp. 39-59.
    [Google Scholar]
  13. Wittgenstein, L. (1978[1956]) Remarks on the foundations ofmathematics. Uitgegeven door G. H.von Wright, R.Rhees, en G. E. M.Anscombe, Vertaald door G. E. M.Anscombe, Oxford: Basil Blackwell.
    [Google Scholar]
  14. Wittgenstein, L. (19895 (19751) [1922]) Tractatus logico-philosophicus, Vertaald door W. F.Hermans, Amsterdam: Athenaeum-Polak & Van Gennep.
    [Google Scholar]
  15. Wittgenstein, L. (2022 [1922]) Tractatus logico-philosophicus, Vertaald door PeterHuijzer en JanSietsma, Amsterdam: Octavo.
    [Google Scholar]
  16. Wittgenstein, L. (2022 [1922]) Tractatus. Logisch-filosofische verhandeling, Vertaald door VictorGijsbers, Amsterdam: Boom.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/ANTW2023.2.007.BEND
Loading
/content/journals/10.5117/ANTW2023.2.007.BEND
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error