An Experimental Study of Recommendation Algorithms for Tailored Health Communication | Amsterdam University Press Journals Online
2004
Volume 1, Issue 1
  • E-ISSN: 2665-9085

Abstract

Abstract

Recommendation algorithms are widely used in online cultural markets to provide personalized suggestions for products like books and movies. At the heart of the commercial success of recommendation algorithms is their ability to make an accurate prediction of a target person’s preferences for previously unseen items. Can these algorithms also be used to predict which health messages an individual will evaluate favorably, and thereby provide effective tailored communication to the person? Although there is evidence that message tailoring enhances persuasion, little research has examined the effectiveness of recommendation algorithms for tailored health interventions aimed at promoting behavior change. We developed a message tailoring algorithm to select smoking-related public service announcements (PSAs) for smokers, and experimentally test its effectiveness in predicting a target smoker’s evaluations of PSAs and encouraging smoking cessation. The tailoring algorithm was constructed using multiple levels of data on smokers’ PSA rating history, individual differences, content features of the PSAs, and other smokers’ PSA ratings. We conducted a longitudinal online experiment to examine its efficacy in comparison to two non-tailored methods: “best in show” (choosing messages most preferred by other smokers) and “off the shelf” (random selection from eligible ads). The results showed that the tailoring algorithm produced more accurate predictions of smokers’ message evaluations than the simple-average method used for the “best in show” approach. Smokers who viewed PSAs recommended by the tailoring algorithm were more likely than those receiving a random set to evaluate the PSAs favorably and quit smoking. There was no significant difference between the “best in show” and “off the shelf” methods in message assessment and quitting behavior.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2019.1.005.SUKK
2019-10-01
2024-09-12
Loading full text...

Full text loading...

/deliver/fulltext/26659085/1/1/05_CCR2019.1_CAPP.html?itemId=/content/journals/10.5117/CCR2019.1.005.SUKK&mimeType=html&fmt=ahah

References

  1. Adomavicius, G. & Tuzhilin, A.(2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17, 734-749. doi:10.1109/TKDE.2005.99
    [Google Scholar]
  2. Aggarwal, C. C.(2016). Recommender systems: The textbook. New York, NY: Springer.
    [Google Scholar]
  3. Amatriain, X. & Basilico, J.(2015). Recommender systems in industry: A Netflix case study. In F.Ricci, L.Rokach, & B.Shapira (Eds.), Recommender systems handbook (2nd ed., pp. 385-419). New York, NY: Springer.
    [Google Scholar]
  4. Bandura, A.(2004). Health promotion by social cognitive means. Health Education and Behavior, 31, 143-164. doi:10.1177/1090198104263660
    [Google Scholar]
  5. Biener, L. & Abrams, D. B.(1991). The Contemplation Ladder: Validation of a measure of readiness to consider smoking cessation. Health Psychology, 10, 360-365. doi:10.1037/0278‑6133.10.5.360
    [Google Scholar]
  6. Bigsby, E., Cappella, J. N., & Seitz, H. H.(2013). Efficiently and effectively evaluating public service announcements: Additional evidence for the utility of perceived effectiveness. Communication Monographs, 80, 1-23. doi:10.1080/03637751.2012.739706
    [Google Scholar]
  7. Buhmann, A., Likely, F., & Geddes, D.(2018). Communication evaluation and measurement: Connecting research to practice. Journal of Communication Management, 22, 1–7. doi:10.1108/JCOM‑12‑2017‑0141
    [Google Scholar]
  8. Cacioppo, J. T., Petty, R. E., & Kao, C. F.(1984). The efficient assessment of need for cognition. Journal of Personality Assessment, 48, 306-307. doi:10.1207/s15327752jpa4803_13
    [Google Scholar]
  9. Cappella, J. N.(2018). Perceived message effectiveness meets the requirements of a reliable, valid, and efficient measure of persuasiveness. Journal of Communication, 68, 994-997. doi:10.1093/joc/jqy044
    [Google Scholar]
  10. Cappella, J. N., Yang, S., & Lee, S.(2015). Constructing recommendation systems for effective health messages using content, collaborative, and hybrid algorithms. Annals of the American Academy of Political and Social Science, 659, 290-306. doi:10.1177/0002716215570573
    [Google Scholar]
  11. Carey, M. A.(1994). The group effect in focus groups: Planning, implementing, and interpreting focus group research. In Morse, J.M. (Ed.), Critical issues in qualitative research methods (pp. 225-241). Thousand Oaks, CA: Sage.
    [Google Scholar]
  12. Dillard, J. P., Shen, L., & Vail, R. G.(2007). Does perceived message effectiveness cause persuasion or vice versa? 17 consistent answers. Human Communication Research, 33, 467-488. doi:10.1111/j.1468‑2958.2007.00308.x
    [Google Scholar]
  13. Fishbein, M., & Ajzen, I.(2010). Predicting and changing behavior: The reasoned action approachNew York, NY: Psychology Press.
    [Google Scholar]
  14. Hastie, T., Mazumder, R, Lee, J. D., & Zadeh, R.(2015). Matrix completion and low-rank SVD via fast alternating least squares. Journal of Machine Learning Research, 16, 3367-3402.
    [Google Scholar]
  15. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerström, K.-O.(1991). The Fagerström Test for Nicotine Dependence: A revision of the Fagerström Tolerance Questionnaire. British Journal of Addiction, 86, 1119-1127. doi:10.1111/j.1360‑0443.1991.tb01879.x
    [Google Scholar]
  16. Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G.(2011). Recommender systems: An introduction. New York, NY: Cambridge University Press.
    [Google Scholar]
  17. Kang, Y., Cappella, J.N., Strasser, A.A., & Lerman, C.(2009). The effect of smoking cues in antismoking advertisements on smoking urge and psychophysiological reactions. Nicotine & Tobacco Research, 11, 254-261. doi:10.1093/ntr/ntn033
    [Google Scholar]
  18. Kelder, S. H., Pechmann, C., Slater, M. D., Worden, J. K., & Levitt, A.(2002). The national youth anti-drug media campaign. American Journal of Public Health, 92, 1211-1212. doi:10.2105/AJPH.92.8.1211
    [Google Scholar]
  19. Kim, M. & Cappella, J. N. (in press). Reliable, valid and efficient evaluation of media messages. Journal of Communication Management.
    [Google Scholar]
  20. Koren, Y. & Bell, R.(2015). Advances in collaborative filtering. In F.Ricci, L.Rokach, & B.Shapira (Eds.), Recommender systems handbook (2nd ed., pp. 77-118). New York, NY: Springer.
    [Google Scholar]
  21. Koren, Y., Bell, R., & Volinsky, C.(2009). Matrix factorization techniques for recommender systems. Computer, 42, 30-37. doi:10.1109/MC.2009.263
    [Google Scholar]
  22. Krebs, P., Prochaska, J. O., & Rossi, J. S.(2010). A meta-analysis of computer-tailored interventions for health behavior change. Preventive Medicine, 51, 214-221. doi:10.1016/j.ypmed.2010.06.004
    [Google Scholar]
  23. Kreuter, M. W., Farrell, D., Olevitch, L., & Brennan, L.(2000). Tailoring health messages: Customizing communication with computer technology. Mahwah, NJ: Earlbaum.
    [Google Scholar]
  24. Lang, A.(2006). Using the limited capacity model of motivated mediated message processing to design effective cancer communication messages. Journal of Communication, 56, S57-S80. doi:10.1111/j.1460‑2466.2006.00283.x
    [Google Scholar]
  25. Luo, W.(2017). Testing mediation effects in cross-classified multilevel data. Behavior Research Methods, 49, 674-684. doi:10.3758/s13428‑016‑0723‑3
    [Google Scholar]
  26. Lustria, M. L. A., Noar, S. M., Cortese, J., Van Stee, S. K., Glueckauf, R. L., & Lee, J.(2013). A meta-analysis of web-delivered tailored health behavior change interventions. Journal of health communication, 18, 1039-1069. doi:10.1080/10810730.2013.768727
    [Google Scholar]
  27. Macnamara, J.(2018). A review of new evaluation models for strategic communication: Progress and gaps. International Journal of Strategic Communication, 12, 180-195. doi:10.1080/1553118X.2018.1428978
    [Google Scholar]
  28. Morgan, S. E., Palmgreen, P., Stephenson, M. T., Hoyle, R. H., & Lorch, E. P.(2003). Associations between message features and subjective evaluations of the sensation value of antidrug public service announcements. Journal of Communication, 53, 512-526. doi:10.1111/j.1460‑2466.2003.tb02605.x
    [Google Scholar]
  29. Ning, X., Desrosiers, C., & Karypis, G.(2015). A comprehensive survey of neighborhood-based recommendation methods. Recommender systems handbook, In F.Ricci, L.Rokach, & B.Shapira (Eds.), Recommender systems handbook (2nd ed., pp. 37-76). New York, NY: Springer.
    [Google Scholar]
  30. Noar, S. M., & Harrington, N. G.(2016). Tailored communications for health-related decision-making and behavior change. In M. A.Diefenbach, S.Miller-Halegoua, & D. J.Bowen (Eds.), Handbook of health decision science (pp. 251-263). New York, NY: Springer.
    [Google Scholar]
  31. Nonnemaker, J., Farrelly, M. C., Kamyab, K., Busey, A., & Mann, N.(2010). Experimental study of graphic cigarette warning labels. Research Triangle Park, NC: RTI International.
    [Google Scholar]
  32. Parvanta, S., Gibson, L., Forquer, H., Shapiro-Luft, D., Dean, L., Freres, … & Cappella, J. N.(2013). Applying quantitative approaches to the formative evaluation of antismoking campaign messages. Social Marketing Quarterly, 19, 242-264. doi:10.1177/1524500413506004
    [Google Scholar]
  33. Petty, R. E., Barden, J., & Wheeler, S. C.(2009). The elaboration likelihood model of persuasion: Developing health promotions for sustained behavioral change. In R. J.DiClemente, R. A.Crosby, & M. C.Kegler (Eds.), Emerging theories in health promotion practice and research (2nd ed., pp. 185-214). San Francisco, CA: Jossey-Bass.
    [Google Scholar]
  34. Raudenbush, S. W. & Bryk, A. S.(2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
    [Google Scholar]
  35. Resnick, P. & Varian, H. R.(1997). Recommender systems. Communications of the ACM, 40, 56-58. doi:10.1145/245108.245121
    [Google Scholar]
  36. Rimer, B. K., & Kreuter, M. W.(2006). Advancing tailored health communication: A persuasion and message effects perspective. Journal of Communication, 56, S184-S201. doi:10.1111/j.1460‑2466.2006.00289.x
    [Google Scholar]
  37. Sadasivam, R. S., Cutrona, S. L., Kinney, R. L., Marlin, B. M., Mazor, K. M., Lemon, S. C., & Houston, T. K.(2016). Collective-intelligence recommender systems: Advancing computer tailoring for health behavior change into the 21st century. Journal of medical Internet research, 18, e42. doi:10.2196/jmir.4448
    [Google Scholar]
  38. Sarwar, B.Karypis, G., Konstan, J., & Riedl, J.(2001). Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, 285-295.
    [Google Scholar]
  39. Slater, M. D.(2006). Specification and misspecification of theoretical foundations and logic models for health communication campaigns. Health Communication, 20, 149-157. doi:10.1207/s15327027hc2002_6
    [Google Scholar]
  40. Zhao, X., Alexander, T. N., Hoffman, L., Jones, C., Delahanty, J., Walker, M., Berger, A. T., & Talbert, E.(2016). Youth receptivity to FDA’s the real cost tobacco prevention campaign: Evidence from message pretesting. Journal of Health Communication, 21, 1153-1160. doi:10.1080/10810730.2016.1233307
    [Google Scholar]
  41. ZhaoX., Strasser, A., Cappella, J. N., Lerman, C., & Fishbein, M., (2011). A measure of perceived argument strength: reliability and validity. Communication Methods and Measures, 5, 48-75. doi:10.1080/19312458.2010.547822
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/CCR2019.1.005.SUKK
Loading
/content/journals/10.5117/CCR2019.1.005.SUKK
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): health communication; message tailoring; Recommendation algorithms
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error