2004
Volume 1, Issue 1
  • ISSN: 2665-9085
  • E-ISSN: 2665-9085

Abstract

Abstract

A lot of modern media use is guided by algorithmic curation, a phenomenon that is in desperate need of empirical observation, but for which adequate methodological tools are largely missing. To fill this gap, computational observation offers a novel approach—the unobtrusive and automated collection of information encountered within algorithmically curated media environments by means of a browser plug-in. In contrast to prior methodological approaches, browser plug-ins allow for reliable capture and repetitive analysis of both content and context at the point of the actual user encounter. After discussing the technological, ethical, and practical considerations relevant to this automated solution, we present our open-source browser plug-in as an element in an adequate multi-method design, along with potential links to panel surveys and content analysis. Ultimately, we present a proof-of-concept study in the realm of news exposure on Facebook; we successfully deployed the plug-in to Chrome and Firefox, and we combined the computational observation with a two-wave panel survey. Although this study suffered from severe recruitment difficulties, the results indicate that the methodological setup is reliable and ready to implement for data collection within a variety of studies on media use and media effects.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2019.1.004.HAIM
2019-10-01
2021-07-30
Loading full text...

Full text loading...

/deliver/fulltext/26659085/1/1/04_CCR2019.1_HAIM.html?itemId=/content/journals/10.5117/CCR2019.1.004.HAIM&mimeType=html&fmt=ahah

References

  1. Ahmadi, M., & Wohn, D. Y.(2018). The antecedents of incidental news exposure on social media. Social Media + Society, 4(2), 1–8. doi:https://doi.org/10.1177/2056305118772827
    [Google Scholar]
  2. Anderson, A. A., Brossard, D., Scheufele, D. A., Xenos, M. A., & Ladwig, P.(2014). The “nasty effect:” Online incivility and risk perceptions of emerging technologies. Journal of Computer-Mediated Communication, 19(3), 373–387. doi:https://doi.org/10.1111/jcc4.12009
    [Google Scholar]
  3. Bodó, B., Helberger, N., Irion, K., Zuiderveen Borgesius, F. J., Möller, J., van de Velde, B., … de Vreese, C. H.(2018). Tackling the algorithmic control crisis - the technical, legal, and ethical challenges of research into algorithmic agents. Yale Journal of Law and Technology, 19(1), 133–180.
    [Google Scholar]
  4. Bozdag, E.(2013). Bias in algorithmic filtering and personalization. Ethics and Information Technology, 15(3), 209–227. doi:https://doi.org/10.1007/s10676-013-9321-6
    [Google Scholar]
  5. Diakopoulos, N.(2014). Algorithmic accountability. Journalistic investigation of computational power structures. Digital Journalism, 3(3), 398–415. doi:https://doi.org/10.1080/21670811.2014.976411
    [Google Scholar]
  6. Eslami, M., Rickman, A., Vaccaro, K., Aleyasen, A., Vuong, A., Karahalios, K., … Sandvig, C.(2015). “I always assumed that i wasn’t really that close to [her]”: Reasoning about invisible algorithms in news feeds. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems - CHI ’15, 153–162. doi:https://doi.org/10.1145/2702123.2702556
    [Google Scholar]
  7. European Parliament, & Council of the European Union
    European Parliament, & Council of the European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)., (2016).
  8. Freelon, D.(2018). Computational research in the post-API age. Political Communication, 35(4), 665–668. doi:https://doi.org/10.1080/10584609.2018.1477506
    [Google Scholar]
  9. Gedeshi, I., Zulehner, P. M., Faradov, T., Rotman, D. G., Swyngedouw, Marc (Flanders), Fotev, G., … European Values Study Group. (2010). European Values Study 2008: Integrated dataset (EVS 2008) [Data set]. doi:https://doi.org/10.4232/1.10059
    [Google Scholar]
  10. Guess, A. M.(2015). Measure for measure: An experimental test of online political media exposure. Political Analysis, 23(1), 59–75. doi:https://doi.org/10.1093/pan/mpu010
    [Google Scholar]
  11. Guess, A. M., Munger, K., Nagler, J., & Tucker, J.(2018). How accurate are survey responses on social media and politics?Political Communication, 0(0), 1–18. doi:https://doi.org/10.1080/10584609.2018.1504840
    [Google Scholar]
  12. Haenschen, K.(2019). Self-reported versus digitally recorded: Measuring political activity on Facebook. Social Science Computer Review. doi:https://doi.org/10.1177/0894439318813586
    [Google Scholar]
  13. Haim, M., Graefe, A., & Brosius, H.-B.(2016). The burst of the bubble? Effects of automated personalization on news diversity. Paper presented at the 65th meeting of the International Communication Association presented at the Fukuoka. Fukuoka.
  14. Haim, M., Kümpel, A. S., & Brosius, H.-B.(2018). Popularity cues in online media: A review of conceptualizations, operationalizations, and general effects. Studies in Communication and Media, 7(2), 186–207. doi:https://doi.org/10.5771/2192-4007-2018-2-58
    [Google Scholar]
  15. Hasebrink, U., & Popp, J.(2006). Media repertoires as a result of selective media use. A conceptual approach to the analysis of patterns of exposure. Communications, 31(3), 369–387. doi:https://doi.org/10.1515/commun.2006.023
    [Google Scholar]
  16. Jürgens, P., Stark, B., & Magin, M.(2019). Two half-truths make a whole? On bias in self-reports and tracking data. Social Science Computer Review. doi:https://doi.org/10.1177/0894439319831643
    [Google Scholar]
  17. Kalogeropoulos, A., & Newman, N.(2017). “I saw the news on Facebook”: Brand attribution when accessing news from distributed environments. Oxford: Reuters Institute for the Study of Journalism.
  18. Kim, S. J.(2014). A repertoire approach to cross-platform media use behavior. New Media & Society, 18(3), 353–372. doi:https://doi.org/10.1177/1461444814543162
    [Google Scholar]
  19. Kümpel, A. S.(2018). The issue takes it all? Incidental news exposure and news engagement on Facebook. Digital Journalism, 5(1), 1–22. doi:https://doi.org/10.1080/21670811.2018.1465831
    [Google Scholar]
  20. Leiner, D.(2014). Convenience samples from online respondent pools: A case study of the SoSci Panel. Retrieved from https://www.researchgate.net/publication/259669050
  21. Menchen-Trevino, E.(2016). Web Historian: Enabling multi-method and independent research with real-world web browsing history data. IConference 2016 Proceedings. Presented at the iConference 2016, Philadelphia, PA. doi:https://doi.org/10.9776/16611
    [Google Scholar]
  22. Microsoft
    Microsoft. (2017, August 2). Porting an extension from Chrome to Microsoft Edge. Retrieved November 13, 2018, from https://docs.microsoft.com/en-us/microsoft-edge/extensions/guides/porting-chrome-extensions
    [Google Scholar]
  23. Möller, J., van de Velde, R. N., Merten, L., & Puschmann, C.(2019). Explaining online news engagement based on browsing behavior: Creatures of habit?Social Science Computer Review. doi:https://doi.org/10.1177/0894439319828012
    [Google Scholar]
  24. Newman, N., Fletcher, R., Kalogeropoulos, A., Levy, D. A. L., & Nielsen, R. K.(2018). Digital news report 2018. Retrieved from media.digitalnewsreport.org/wp-content/uploads/2018/06/digital-news-report-2018.pdf
  25. Newman, N., Fletcher, R., Levy, D. A. L., & Nielsen, R. K.(2016). Digital news report 2016. Retrieved from reutersinstitute.politics.ox.ac.uk/sites/default/files/Digital-News-Report-2016.pdf
  26. Price, V., & Zaller, J.(1993). Who gets the news? Alternative measures of news reception and their implications for research. Public Opinion Quarterly, 57(2), 133–164. doi:https://doi.org/10.1086/269363
    [Google Scholar]
  27. Prior, M.(2009). The immensely inflated news audience: Assessing bias in self-reported news exposure. Public Opinion Quarterly, 73(1), 130–143. doi:https://doi.org/10.1093/poq/nfp002
    [Google Scholar]
  28. Reinecke, L., & Hofmann, W.(2016). Slacking off or winding down? An experience sampling study on the drivers and consequences of media use for recovery versus procrastination. Human Communication Research, 42(3), 441–461. doi:https://doi.org/10.1111/hcre.12082
    [Google Scholar]
  29. Revilla, M., Ochoa, C., & Loewe, G.(2017). Using passive data from a meter to complement survey data in order to study online behavior. Social Science Computer Review, 35(4), 521–536. doi:https://doi.org/10.1177/0894439316638457
    [Google Scholar]
  30. Roßteutscher, S., Schmitt-Beck, R., Schoen, H., Weßels, B., Wolf, C., Preißinger, M., … Gärtner, L.(2018). Wahlkampf-Panel 2017 (GLES) [Data set]. doi:https://doi.org/10.4232/1.13150
  31. Sax, L. J., Gilmartin, S. K., & Bryant, A. N.(2003). Assessing response rates and nonresponse bias in web and paper surveys. Research in Higher Education, 44(4), 409–432. doi:https://doi.org/10.1023/A:1024232915870
    [Google Scholar]
  32. Scharkow, M.(2016). The accuracy of self-reported internet use—a validation study using client log data. Communication Methods and Measures, 10(1), 13–27. doi:https://doi.org/10.1080/19312458.2015.1118446
    [Google Scholar]
  33. Struckmann, S., & Karnowski, V.(2016). News consumption in a changing media ecology: An MESM-study on mobile news. Telematics and Informatics, 33(2), 309–319. doi:https://doi.org/10.1016/j.tele.2015.08.012
    [Google Scholar]
  34. Taneja, H., Webster, J. G., Malthouse, E. C., & Ksiazek, T. B.(2012). Media consumption across platforms: Identifying user-defined repertoires. New Media & Society, 14(6), 951–968. doi:https://doi.org/10.1177/1461444811436146
    [Google Scholar]
  35. van Aelst, P., Strömbäck, J., Aalberg, T., Esser, F., de Vreese, C. H., Matthes, J., … Stanyer, J.(2017). Political communication in a high-choice media environment: A challenge for democracy?Annals of the International Communication Association, 41(1), 3–27. doi:https://doi.org/10.1080/23808985.2017.1288551
    [Google Scholar]
  36. van Atteveldt, W., & Peng, T.-Q.(2018). When Communication Meets Computation: Opportunities, Challenges, and Pitfalls in Computational Communication Science. Communication Methods and Measures, 12(2–3), 81–92. doi:https://doi.org/10.1080/19312458.2018.1458084
    [Google Scholar]
  37. Wallach, H.(2016). Computational social science: Toward a collaborative future. In R. M.Alvarez (Ed.), Computational Social Science (pp. 307–316). doi:https://doi.org/10.1017/CBO9781316257340.014
    [Google Scholar]
  38. Webster, J. G., & Ksiazek, T. B.(2012). The dynamics of audience fragmentation: Public attention in an age of digital media. Journal of Communication, 62(1), 39–56. doi:https://doi.org/10.1111/j.1460-2466.2011.01616.x
    [Google Scholar]
  39. Wolfsfeld, G., Yarchi, M., & Samuel-Azran, T.(2016). Political information repertoires and political participation. New Media & Society, 18(9), 2096–2115. doi:https://doi.org/10.1177/1461444815580413
    [Google Scholar]
  40. Zuiderveen Borgesius, F. J., Trilling, D., Möller, J., Balázs, B., de Vreese, C. H., & Helberger, N.(2016). Should we worry about filter bubbles?Internet Policy Review, 5(1), 1–16. doi:https://doi.org/10.14763/2016.1.401
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/CCR2019.1.004.HAIM
Loading
/content/journals/10.5117/CCR2019.1.004.HAIM
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error