2004
Volume 2, Issue 2
  • ISSN: 2665-9085
  • E-ISSN: 2665-9085

Abstract

Abstract

Social media protest networks involve many participants, from long-time activists to individuals who are engaged only in a particular protest event. We propose a new approach to studying how various communities of users participate in protest events. Our approach combines two methodological innovations. First, rather than study tweets central to one event, we collect full timelines of user activity leading up to participation in a focal event. Second, we propose bi-spectral clustering as a scalable computational method for rapidly identifying communities of users by the words (hashtags) they use. Using a large sample of tweets from users who discussed the 2016 protests in Charlotte, North Carolina following the extrajudicial killing of Keith Lamont Scott as a case study, we demonstrate how bi-spectral clustering can be applied to sort, sample, and identify ideologically and thematically coherent clusters whose members participated in the protest on Twitter. Our proposed approach provides another tool in the mixed methods scholar’s toolkit to computationally sort and cluster large-scale network data by allowing researchers to look beyond focal hashtags or keywords and situate protest messages within the broader communication context of participating users.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2020.2.002.JOSE
2020-10-01
2021-06-16
Loading full text...

Full text loading...

/deliver/fulltext/26659085/2/2/02_CCR2020.2_JOSE.html?itemId=/content/journals/10.5117/CCR2020.2.002.JOSE&mimeType=html&fmt=ahah

References

  1. Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., … Zhu, M.(2012). A Practical Algorithm for Topic Modeling with Provable Guarantees (ArXiv E-Print No. 1212.4777).
  2. Barberá, P., Wang, N., Bonneau, R., Jost, J. T., Nagler, J., Tucker, J., & González-Bailón, S.(2015). The Critical Periphery in the Growth of Social Protests. PLOS ONE, 10(11), e0143611.
    [Google Scholar]
  3. Benigni, M. C., Joseph, K., & Carley, K. M.(2017). Online extremism and the communities that sustain it: Detecting the ISIS supporting community on Twitter. PLOS ONE, 12(12), e0181405.
    [Google Scholar]
  4. Blei, D. M., Ng, A. Y., & Jordan, M. I.(2003). Latent dirichlet allocation. Journal of Machine Learning Research., 3, 993-1022.
    [Google Scholar]
  5. Blei, D. M., & Lafferty, J. D.(2007). A correlated topic model of science. The Annals of Applied Statistics, 1(1), 17-35.
    [Google Scholar]
  6. Borgatti, S. P., & Halgin, D. S.(2011). Analyzing affiliation networks. The Sage Handbook of Social Network Analysis, 1, 417-433.
    [Google Scholar]
  7. Breiger, R. L., & Puetz, K.(2015). Culture and networks. The International Encyclopedia of the Social and Behavioral Sciences, 557-62.
    [Google Scholar]
  8. Budak, C., & Watts, D. J.(2015). Dissecting the spirit of Gezi: Influence vs. selection in the Occupy Gezi movement. Sociological Science, 2, 370-397.
    [Google Scholar]
  9. Castells, M.(2015). Networks of outrage and hope: Social movements in the Internet age. John Wiley & Sons.
  10. Conover, M. D., Davis, C., Ferrara, E., McKelvey, K., Menczer, F., & Flammini, A.(2013). The Geospatial Characteristics of a Social Movement Communication Network. PLOS ONE, 8(3), e55957.
    [Google Scholar]
  11. Conover, M., Ratkiewicz, J., Francisco, M. R., Gonçalves, B., Menczer, F., & Flammini, A.(2011). Political polarization on twitter. Proceedings of the International Conference on the Web and Social Media, 133, 89-96.
    [Google Scholar]
  12. Dhillon, I. S.(2001). Co-clustering Documents and Words Using Bipartite Spectral Graph Partitioning. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 269-274.
    [Google Scholar]
  13. DiMaggio, P.(2015). Adapting computational text analysis to social science (and vice versa). Big Data & Society, 2(2), 2053951715602908.
    [Google Scholar]
  14. DiMaggio, P., Nag, M., & Blei, D.(2013). Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding. Poetics, 41(6), 570-606.
    [Google Scholar]
  15. Freelon, D., Lopez, L., Clark, M. D., & Jackson, S. J.(2018). How Black Twitter and other social media communities interact with mainstream news. Miami, FL, USA: Knight Foundation.
  16. Freelon, D., McIlwain, C., & Clark, M. (2016a). Quantifying the power and consequences of social media protest. New Media & Society, 1461444816676646.
    [Google Scholar]
  17. Freelon, D., McIlwain, C. D., & Clark, M. (2016b). Beyond the hashtags: #Ferguson, #BlackLivesMatter, and the online struggle for offline justice. Center for Media & Social Impact, American University.
    [Google Scholar]
  18. Gerbaudo, P.(2012). Tweets and the Streets. Pluto PressLondon.
  19. Gerlach, M., Peixoto, T. P., & Altmann, E. G.(2018). A network approach to topic models. Science Advances, 4(7), eaaq1360.
    [Google Scholar]
  20. González-Bailón, S., & Wang, N.(2016). Networked discontent: The anatomy of protest campaigns in social media. Social Networks, 44, 95-104.
    [Google Scholar]
  21. Griffiths, T. L., Jordan, M. I., Tenenbaum, J. B., & Blei, D. M.(2004). Hierarchical topic models and the nested Chinese restaurant process. Advances in Neural Information Processing Systems, 17-24.
    [Google Scholar]
  22. Hartigan, J. A., & Wong, M. A.(1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100-108.
    [Google Scholar]
  23. Jackson, S.J., Bailey, M. & Foucault Welles, B.(2020). #HashtagActivism: Networks of Race and Gender Justice. Cambridge, MA: MIT Press.
  24. Jackson, S. J., & Foucault Welles, B.(2015). Hijacking# myNYPD: Social media dissent and networked counterpublics. Journal of Communication, 65(6), 932-952.
    [Google Scholar]
  25. Jackson, S. J., & Foucault Welles, B.(2016). # Ferguson is everywhere: Initiators in emerging counterpublic networks. Information, Communication & Society, 19(3), 397-418.
    [Google Scholar]
  26. Keegan, B., Gergle, D., & Contractor, N.(2011). Hot off the wiki: dynamics, practices, and structures in Wikipedia’s coverage of the Tōhoku catastrophes. Proceedings of the 7th International Symposium on Wikis and Open Collaboration, 105-113. ACM.
    [Google Scholar]
  27. Kwak, H., Lee, C., Park, H., & Moon, S.(2010). What is Twitter, a social network or a news media?Proceedings of the 19th International Conference on World Wide Web, 591-600.
    [Google Scholar]
  28. Levy, O., & Goldberg, Y.(2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems (pp. 2177-2185).
    [Google Scholar]
  29. Linder, F.(2017). Improved Data Collection from Online Sources Using Query Expansion and Active Learning.
  30. McDaid, A. F., Greene, D., & Hurley, N.(2011). Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515.
    [Google Scholar]
  31. Morstatter, F., & Liu, H.(2017). In search of coherence and consensus: measuring the interpretability of statistical topics. The Journal of Machine Learning Research, 18(1), 6177-6208.
    [Google Scholar]
  32. Morstatter, F., Pfeffer, J., Liu, H., & Carley, K. M.(2013). Is the sample good enough? comparing data from twitter’s streaming api with twitter’s firehose. Proceedings of the International Conference on the Web and Social Media.
    [Google Scholar]
  33. Papacharissi, Z., & de Fatima Oliveira, M.(2012). Affective News and Networked Publics: The Rhythms of News Storytelling on #Egypt. Journal of Communication, 62(2), 266-282.
    [Google Scholar]
  34. Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., … Rand, D. G.(2014). Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4), 1064-1082.
    [Google Scholar]
  35. Schmidt, B. M.(2012). Words alone: Dismantling topic models in the humanities. Journal of Digital Humanities, 2(1), 49-65.
    [Google Scholar]
  36. Starbird, K., & Palen, L.(2012). (How) will the revolution be retweeted?: information diffusion and the 2011 Egyptian uprising. Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work, 7-16.
    [Google Scholar]
  37. Szell, M., Lambiotte, R., & Thurner, S.(2010). Multirelational organization of large-scale social networks in an online world. Proceedings of the National Academy of Sciences, 107(31), 13636-13641.
    [Google Scholar]
  38. Tufekci, Z.(2014). Big Questions for Social Media Big Data: Representativeness, Validity and Other Methodological Pitfalls. ICWSM ’14: Proceedings of the 8th International AAAI Conference on Weblogs and Social Media.
    [Google Scholar]
  39. Tufekci, Z.(2017). Twitter and tear gas: The power and fragility of networked protest. Yale University Press.
  40. Wallach, H., Mimno, D., & McCallum, A.(2009). Rethinking LDA: Why priors matter. Advances in Neural Information Processing Systems, 22, 1973-1981.
    [Google Scholar]
  41. Yang, L., Sun, T., Zhang, M., & Mei, Q.(2012). We know what @you #tag: does the dual role affect hashtag adoption?Proceedings of the 21st International Conference on World Wide Web, 261-270.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/CCR2020.2.002.JOSE
Loading
/content/journals/10.5117/CCR2020.2.002.JOSE
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): protest networks; social media and protest; social networks; spectral methods; Twitter
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error