2004
Volume 4, Issue 1
  • ISSN: 2665-9085
  • E-ISSN: 2665-9085

Abstract

Abstract

In the Hollywood film industry, racial minorities remain underrepresented. Characters from racially underrepresented groups receive less screen time, fewer central story positions, and frequently inherit plotlines, motivations, and actions that are primarily driven by White characters. Currently, there are no clearly defined, standardized, and scalable metrics for taking stock of racial minorities’ cinematographic representation. In this paper, we combine methodological tools from computer vision and network science to develop a content analytic framework for identifying visual and structural racial biases in film productions. We apply our approach on a set of 89 popular, full-length movies, demonstrating that this method provides a scalable examination of racial inclusion in film production and predicts movie performance. We integrate our method into larger theoretical discussions on audiences’ perception of racial minorities and illuminate future research trajectories towards the computational assessment of racial biases in audiovisual narratives.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2022.1.006.MALI
2022-02-01
2022-07-02
Loading full text...

Full text loading...

/deliver/fulltext/26659085/4/1/CCR2022.1.006.MALI.html?itemId=/content/journals/10.5117/CCR2022.1.006.MALI&mimeType=html&fmt=ahah

References

  1. Abraham, L. & Appiah, O. (2006). Framing news stories: The role of visual imagery in priming racial stereotypes. Howard Journal of Communications, 17(3), 183–203. https://doi.org/10.1080/10646170600829584
    [Google Scholar]
  2. Agarwal, A., Zheng, J., Kamath, S., Balasubramanian, S., & Dey, S. A. (2015). Key female characters in film have more to talk about besides men: Automating the Bechdel test. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 830-840. https://doi.org/10.3115/v1/n15-1084
    [Google Scholar]
  3. AII. (2020). Annenberg Inclusion Initiative. https://annenberg.usc.edu/research/aii
    [Google Scholar]
  4. Atwell Seate, A. & Mastro, D. (2016). Media's influence on immigration attitudes: An intergroup threat theory approach. Communication Monographs, 83(2), 194–213. https://doi.org/10.1080/03637751.2015.1068433
    [Google Scholar]
  5. Bamman, D., O'Connor, B., & Smith, N.A. (2013). Learning latent personas of film charactersProceedings of the 51st Annual Meeting of the Association for Computational Linguistics,1, 352–361. https://aclanthology.org/P13-1035
    [Google Scholar]
  6. Bollobás, B. (2001). Random Graphs. Cambridge University Press. https://doi.org/10.1017/cbo9780511814068
    [Google Scholar]
  7. Bechdel, A. (1985). The Rule. Dykes to Watch Out For.
    [Google Scholar]
  8. Bochkovskiy, A., Wang, C.Y., & Liao, H. M. (2020). YOLOv4: optimal speed and accuracy of object detection. CoRR, abs/2004.10934. https://arxiv.org/abs/2004.10934v1
    [Google Scholar]
  9. Brandes, U. & Erlebach, T. (Eds.). (2005). Network Analysis. LNCS, 3418. Springer.
    [Google Scholar]
  10. Buolamwini, J. & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in commercial gender classification. Conference on Fairness, Accountability and Transparency, 77–91. https://proceedings.mlr.press/v81/buolamwini18a.html
    [Google Scholar]
  11. Canini, L., Benini, S., & Leonardi, R. (2011). Affective analysis on patterns of shot types in movies. Proceedings of the 7th International Symposium on Image and Signal Processing and Analysis, 253-258. https://ieeexplore.ieee.org/abstract/document/6046615
    [Google Scholar]
  12. Cao, X. (2013). The effects of facial close-ups and viewers’ sex on empathy and intentions to help people in need. Mass Communication and Society, 16(2), 161–178. https://doi.org/10.1080/15205436.2012.683928
    [Google Scholar]
  13. Celious, A. & Oyserman, D. (2001). Race From the Inside: An Emerging Heterogeneous Race Model. Journal of Social Issues, 57(1), 149–165. https://doi.org/10.1111/0022-4537.00206
    [Google Scholar]
  14. Croteau, D. & Hoynes, W. (2014). Media/Society: Industries, images, and audiences. (5th ed.). SAGE Publications.
    [Google Scholar]
  15. Chu, E. & Roy, D. (2017). Audio-visual sentiment analysis for learning emotional arcs in movies. IEEE International Conference on Data Mining. 829–834. https://doi.org/10.1109/icdm.2017.100
    [Google Scholar]
  16. Dalisay, F. & Tan, A. (2009). Assimilation and Contrast Effects in the Priming of Asian American and African American Stereotypes through TV Exposure. Journalism & Mass Communication Quarterly, 86(1), 7–22. https://doi.org/10.1177/107769900908600102
    [Google Scholar]
  17. Desilver, D. (2015). Share of counties where whites are a minority has doubled since 1980. Pew Research Center. http://www.pewresearch.org/fact-tank/2015/07/01/share-of-counties-where-whites-are-a-minority-has-doubled-since-1980/
    [Google Scholar]
  18. Doane, M.A. (2003). The Close-Up: Scale and Detail in the Cinema. differences: A Journal of Feminist Cultural Studies. 14(3), 89-111. https://doi.org/10.1215/10407391-14-3-89
    [Google Scholar]
  19. Eliashberg, J., Hui, S. K., & Zhang, Z. J. (2007). From storyline to box office: A new approach for green-lighting movie scripts. Management Science, 53(6), 881–893. http://dx.doi.org/10.1287/mnsc.1060.0668.
    [Google Scholar]
  20. Eliashberg, J., Hui, S. K., & Zhang, Z. (2014). Assessing box office performance using movie scripts: A kernel-based approach. IEEE Transactions on Knowledge and Data Engineering, 26(11), 2639–2648. https://doi.org/10.1109/tkde.2014.2306681
    [Google Scholar]
  21. Figueroa-Caballero, A., Mastro, D., & Stamps, D. (2019). An Examination of the Effects of Mediated Intragroup and Intergroup Interactions among Latino/a Characters. Communication Quarterly, 67(3), 271–290. https://doi.org/10.1080/01463373.2019.1573745
    [Google Scholar]
  22. Fu, S., He, H., & Hou, Z.-G. (2014). Learning Race from Face: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(12), 2483–2509. https://doi.org/10.1109/tpami.2014.2321570
    [Google Scholar]
  23. Gardner, S. K. & Hughey, M. W. (2017). Still the tragic mulatto? Manufacturing multiracialization in magazine media, 1961–2011. Ethnic and Racial Studies, 42(4), 645–665. https://doi.org/10.1080/01419870.2017.1380212
    [Google Scholar]
  24. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Computer Vision and Pattern Recognition, 580–587. https://doi.org/10.1109/cvpr.2014.81
    [Google Scholar]
  25. Girshick, R. B. (2015). Fast R-CNN. CoRR, abs/1504.08083.
    [Google Scholar]
  26. Gonzalez, E. (2014). Engaging the evolving Hispanic consumers: Look at two distinct subgroups. The Nielsen Company. Retrieved from http://www.nielsen.com/us/en/insights/news/2014/engaging-the-evolving-hispanic-consu mers.html.
    [Google Scholar]
  27. Gleich, D. F. (2015). PageRank Beyond the Web. SIAM Review, 57(3), 321–363. https://doi.org/10.1137/140976649
    [Google Scholar]
  28. Gopinath, S., Chintagunta, P. K., & Venkataraman, S. (2013). Blogs, advertising, and local-market movie box office performance. Management Science, 59(12), 2635–54. https://doi.org/10.1287/mnsc.2013.1732.
    [Google Scholar]
  29. Hickey, W., Koeze, E., Dottle, R., & Wezerek, G. (2017). The next bechdel test. FiveThirtyEight. https://projects.fivethirtyeight.com/next-bechdel/
    [Google Scholar]
  30. Hopp, F. R., Fisher, J. T., & Weber, R. (2020). A Graph-Learning Approach for Detecting Moral Conflict in Movie Scripts. Media and Communication, 8(3), 164–179. https://doi.org/10.17645/mac.v8i3.3155
    [Google Scholar]
  31. Hornsey, M. J. (2008). Social Identity Theory and Self-categorization Theory: A Historical Review. Social and Personality Psychology Compass, 2(1), 204–222. https://doi.org/10.1111/j.1751-9004.2007.00066.x
    [Google Scholar]
  32. Hurley, R. J., Jensen, J. J., Weaver, A., & Dixon, T. (2015). Viewer Ethnicity Matters: Black Crime in TV News and Its Impact on Decisions Regarding Public Policy. Journal of Social Issues, 71(1), 155–170. https://doi.org/10.1111/josi.12102
    [Google Scholar]
  33. Huang, Q., Xiong, Y., Xiong, Y., Zhang, Y., Lin, D. (2018). From trailers to storylines: An efficient way to learn from movies. https://arxiv.org/abs/1806.05341v1
    [Google Scholar]
  34. Jones, P., Quinn, E., & Koskinen, J. (2020). Measuring centrality in film narratives using dynamic character interaction networks. Social Networks, 63, 21-37. https://doi.org/10.1016/j.socnet.2020.03.003
    [Google Scholar]
  35. Jones, S. W. (2008). Tragic No More?: The Reappearance of the Racially Mixed Character. American Fiction of the 1990s (Prosser, J. Ed.), 89-103. Routledge.
    [Google Scholar]
  36. Kagan, D., Chesney, T., & Fire, M. (2020). Using data science to understand the film industry’s gender gap. Palgrave Communications, 6(1), 1-16. https://doi.org/10.1057/s41599-020-0436-1.
    [Google Scholar]
  37. Kärkkäinen, K. & Joo, J. (2021). FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation. IEEE Winter Conference on Applications of Computer Vision, 1547-1557. https://doi.org/10.1109/wacv48630.2021.00159
    [Google Scholar]
  38. Katz, S. D. (1991). Film directing shot by shot—Visualizing from concept to screen. Michael Wiese Productions.
    [Google Scholar]
  39. Kim, M. & Brunn-Bevel, R. J. (2020). Hollywood’s Global Expansion and Racialized Film Industry. Humanity & Society, 44(1), 37–66. https://doi.org/10.1177/0160597619832045.
    [Google Scholar]
  40. Kølvraa, C. (2013). Ideology and the crowd. Distinktion: Journal of Social Theory, 14(2), 114–133. https://doi.org/10.1080/1600910x.2012.745811
    [Google Scholar]
  41. Lauzen, M. (2018a). It’s a man’s (celluloid) world: Portrayals of female characters in the 100 top films of 2017. Center for the Study of Women in Television and Film. https://womenintvfilm.sdsu.edu/wp-content/uploads/2019/02/2018_Its_a_Mans_Celluloid_World_Report.pdf
    [Google Scholar]
  42. Lauzen, M. (2018b). Boxed in 2017–18: Women on screen and behind the scenes in television. Center for the Study of Women in Television and Film. https://womenintvfilm.sdsu.edu/wp-content/uploads/2018/09/2017-18_Boxed_In_Report.pdf
    [Google Scholar]
  43. Liu, Z., Luo, P., Wang, X., & Tang, X. (2015). Deep Learning Face Attributes in the Wild. 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/iccv.2015.425
    [Google Scholar]
  44. LoBue, V. & Thrasher, C. (2015). The Child Affective Facial Expression (CAFE) set: validity and reliability from untrained adults. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.01532
    [Google Scholar]
  45. Mastro, D. E. (2003). A social identity approach to understanding the impact of television messages. Communication Monographs, 70(2), 98–113. https://doi.org/10.1080/0363775032000133764
    [Google Scholar]
  46. Mastro, D., Behm-Morawitz, E., & Ortiz, M. (2007). The cultivation of social perceptions of Latinos: A mental models approach. Media Psychology, 9(2), 347-365. https://doi.org/10.1080/15213260701286106.
    [Google Scholar]
  47. Mastro, D. E. & Kopacz, M. A. (2006). Media representations of race, prototypicality, and policy reasoning: An application of self-categorization theory. Journal of Broadcasting & Electronic Media, 50(2), 305-322. https://doi.org/10.1207/s15506878jobem5002_8.
    [Google Scholar]
  48. Mastro, D. & Tukachinsky, R. (2011). The Influence of Exemplar Versus Prototype-Based Media Primes on Racial/Ethnic Evaluations. Journal of Communication, 61(5), 916–937. https://doi.org/10.1111/j.1460-2466.2011.01587.x
    [Google Scholar]
  49. McClintock, P. (2020). 2019 global box office revenue hit record $42.5B despite 4 percent dip in U.S.Billboard. https://www.billboard.com/articles/news/8547827/2019-global-box-office-revenue-hit-record-425b-despite-4-percent-dip-in-us
    [Google Scholar]
  50. Millerson, G. (1961). The technique of television production. Focal Press.
    [Google Scholar]
  51. Molina-Guzmán, I. (2016). #OscarsSoWhite: how Stuart Hall explains why nothing changes in Hollywood and everything is changing. Critical Studies in Media Communication, 33(5), 438–454. https://doi.org/10.1080/15295036.2016.1227864.
    [Google Scholar]
  52. MPAA. (2014). Theatrical market statistics. Motion Picture Association of America. https://www.motionpictures.org/wp-content/uploads/2015/03/MPAA-Theatrical-Market-Statistics-2014.pdf
    [Google Scholar]
  53. MPAA. (2019). Theme report. Motion Picture Association of America. https://www.motionpictures.org/wp-content/uploads/2020/03/MPA-THEME-2019.pdf
    [Google Scholar]
  54. Mutz, D. C. (2006). Effects of “In-Your-Face” Television Discourse on Perceptions of a Legitimate Opposition. Hendricks Symposium–Department of Political Science. http://digitalcommons.unl.edu/politicalsciencehendricks/16.
    [Google Scholar]
  55. Noam, E. (2009). Media ownership and concentration in America. Oxford University Press.
    [Google Scholar]
  56. Ortiz, M. & Harwood, J. (2007). A social cognitive theory approach to the effects of mediated intergroup contact on intergroup attitudes. Journal of Broadcasting & Electronic Media, 51(4), 615–631. https://doi.org/10.1080/08838150701626487
    [Google Scholar]
  57. Park, S. B., Kim, Y. W., Uddin, M. N., Jo, G. S. (2009). Character-net: Character network analysis from video. Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, 1, 305–308. https://doi.org/10.1109/WI-IAT.2009.54
    [Google Scholar]
  58. Phillips, P. J., Wechsler, H., Huang, J., & Rauss, P. J. (1998). The FERET database and evaluation procedure for face-recognition algorithms. Image and Vision Computing, 16(5), 295–306. https://doi.org/10.1016/s0262-8856(97)00070-x
    [Google Scholar]
  59. Raji, I. D. & Buolamwini, J. (2019). Actionable auditing: Investigating the impact of publicly naming biased performance results of commercial AI products. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society,429–435. https://doi.org/10.1145/3306618.3314244
    [Google Scholar]
  60. Ramakrishna, A., Martínez, V.R., Malandrakis, N., Singla, K., & Narayanan, S. (2017). Linguistic analysis of differences in portrayal of movie characters. Proceedings of the 55th annual meeting of the association for computational linguistics, 1, 1669–1678. https://aclanthology.org/P17-1153
    [Google Scholar]
  61. Ramasubramanian, S. (2010). Television viewing, racial attitudes, and policy preferences: Exploring the role of social identity and intergroup emotions in influencing support for affirmative action. Communication Monographs, 77(1), 102–120. https://doi.org/10.1080/03637750903514300
    [Google Scholar]
  62. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),779-788. https://doi.org/10.1109/cvpr.2016.91
    [Google Scholar]
  63. Redmon, J. & Farhadi, A. (2017). YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6517-6525. https://doi.org/10.1109/cvpr.2017.690
    [Google Scholar]
  64. Redmon, J. & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. ArXiv, abs/1804.02767. https://arxiv.org/pdf/1804.02767.pdf
    [Google Scholar]
  65. Ren, S., He, K., Girshick, R., & Sun., J. (2015) Faster r-cnn: Towards real-time object detection with region proposal networks. ArXiv, abs/1506.01497. https://arxiv.org/abs/1506.01497v3
    [Google Scholar]
  66. Ricanek, K. & Tesafaye, T. (2006). MORPH: a longitudinal image database of normal adult age-progression. 7th International Conference on Automatic Face and Gesture Recognition (FGR06), 341-345. https://doi.org/10.1109/FGR.2006.78
    [Google Scholar]
  67. Rooney, B. & Bálint, K. E. (2018). Watching more closely: Shot scale affects film viewers’ Theory of Mind tendency but not ability. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02349.
    [Google Scholar]
  68. Simoes, G. S., Wehrmann, J., Barros, R. C., Ruiz, D. D. (2016). Movie genre classification with convolutional neural networks. 2016 International Joint Conference on Neural Networks (IJCNN), 259–266. https://doi.org/10.1109/ijcnn.2016.7727207
    [Google Scholar]
  69. Skowron, M., Trapp, M., Payr, S., & Trappl, R. (2016). Automatic identification of character types from film dialogs. Applied Artificial Intelligence, 30(10), 942-973. https://doi.org/10.1080/08839514.2017.1289311
    [Google Scholar]
  70. SmithS. & Choueiti, M. (2010). Gender disparity on screen and behind the camera in family films. Executive report. USC Annenberg Inclusion Initiative. https://seejane.org/wp-content/uploads/full-study-gender-disparity-in-family-films-v2.pdf
    [Google Scholar]
  71. Smith, S. L. & Choueiti, M. (2011). Gender inequality in cinematic content? A look at females on screen & behind-the-camera in top-grossing 2008 films. USC Annenberg Inclusion Initiative. https://annenberg.usc.edu/sites/default/files/MDSCI_Gender_Inequality_in_TopGrossing_Films.pdf
    [Google Scholar]
  72. SmithS., PieperK., & Choueiti, M. (2017). Inclusion in the director’s chair? Gender, race, & age of film directors across 1,000 films from 2007–2016. Media, Diversity, & Social Change Initiative. https://annenberg.usc.edu/sites/default/files/2017/04/06/MDSCI_Inclusion%20_in_the_Directors_Chair.pdf
    [Google Scholar]
  73. Smith, S. L., Weber, R., Choueiti, M., Pieper, K., Case, A., Yao, K., & Lee, C. (2020). The ticket to inclusion: Gender and race/ethnicity of leads and financial performance across 1,200 popular films. USC Annenberg Inclusion Initiative. https://assets.uscannenberg.org/docs/aii-2020-02-05-ticket-to-inclusion.pdf
    [Google Scholar]
  74. Spangler, T. (2020). Netflix adds 8.8 million subscribers in Q4, cites competition for lower U.S. gains. Variety. https://variety.com/2020/digital/news/netflix-q4-2019-earnings-results-1203474435/.
    [Google Scholar]
  75. Stimpert, J. L., Laux, J. A., Marino, C., & Gleason, G. (2008). Factors influencing motion picture success: Empirical review and update,Journal of Business and Economics Research, 6(11), 39–52. https://doi.org/10.19030/jber.v6i11.2488.
    [Google Scholar]
  76. Statista. (2020). Market share of leading film studios in North America in 2019. Statista - The Statistics Portal. https://www.statista.com/statistics/187171/market-share-of-film-studios-in-north-america-2010/
    [Google Scholar]
  77. Tajfel, H. & Turner, J. C. (1986). The social identity theory of intergroup behaviour. S.Worchel & W. G.Austin (Eds.), Psychology of Intergroup Relations, 7–24. Nelson-Hall.
    [Google Scholar]
  78. Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., & Wetherell, M. S. (1987). Rediscovering the social group: A self-categorization theory. Blackwell.
    [Google Scholar]
  79. Tamborini, R. (2013). Model of intuitive morality and exemplars. R.Tamborini (Ed.), Media and the moral mind, 43–74. Routledge.
    [Google Scholar]
  80. Tamborini, R., & Weber, R. (2020). Advancing the model of intuitive morality and exemplars. K.Floyd & R.Weber (Eds.), The handbook of communication science and biology, 456–469. Routledge.
    [Google Scholar]
  81. Tiemens, R. K. (2009). Some relationships of camera angle to communicator credibility. Journal of Broadcasting, 14(4), 483–490. https://doi.org/10.1080/08838157009363614.
    [Google Scholar]
  82. Tratner, M. (2003). Working the Crowd: Movies and Mass Politics. Criticism, 45(1), Article 4. https://digitalcommons.wayne.edu/criticism/vol45/iss1/4
    [Google Scholar]
  83. Trepte, S. (2006). Social identity theory. J.Bryant & P.Vorderer (Eds.), Psychology of Entertainment, 255–271, Routledge.
    [Google Scholar]
  84. Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., & Wetherell, M. S. (1987). Rediscovering the social group: A self-categorization theory. Blackwell.
    [Google Scholar]
  85. Turner, J. & Oakes, P. (1986). The significance of the social identity concept for social psychology with reference to individualism, interactionism and social influence. British Journal of Social Psychology, 25(3), 237–252. https://doi.org/10.1111/j.2044-8309.1986.tb00732.x
    [Google Scholar]
  86. UNIC. (2017). UNIC annual report 2018. Union Internationale des Cinémas. https://www.unic-cinemas.org/fileadmin/user_upload/wordpress-uploads/2017/06/UNIC_ AR2018_online.pdf
    [Google Scholar]
  87. University, SDS (2017). Women remain underrepresented in Hollywood, study shows. Phys.org. https://phys.org/news/2017-09-women-underrepresented-hollywood.html
    [Google Scholar]
  88. U.S. Census (2019). 2019 Population Estimates by Age, Sex, Race and Hispanic Origin. U.S. Census Bureau. https://www.census.gov/newsroom/press-kits/2020/population-estimates-detailed.html
    [Google Scholar]
  89. Weng, C. Y., Chu, W. T., & Wu, J. L. (2009). Rolenet: Movie analysis from the perspective of social networks. IEEE Transactions on Multimedia, 11(2), 256-271. https://doi.org/10.1109/tmm.2008.2009684
    [Google Scholar]
  90. Wood, J. T. (1994). Gendered lives: Communication, Gender, and Culture, 231-244. Wadsworth Publishing.
    [Google Scholar]
  91. Zhou, H., Hermans, T., Karandikar, A.V., Rehg, J. M. (2010). Movie genre classification via scene categorization. Proceedings of the 18th ACM international conference on Multimedia, 747–750. https://doi.org/10.1145/1873951.1874068
    [Google Scholar]
  92. Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., Fidler, S. (2015). Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. Proceedings of the IEEE international conference on computer vision (ICCV), 19–27. https://doi.org/10.1109/iccv.2015.11
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/CCR2022.1.006.MALI
Loading
/content/journals/10.5117/CCR2022.1.006.MALI
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error