Technostress en verloopintentie: Gemedieerd door burn-out? Een cross-sectioneel onderzoek bij Belgische werknemers | Amsterdam University Press Journals Online
2004
Volume 36, Issue 1
  • ISSN: 0921-5077
  • E-ISSN: 1875-7235

Abstract

Samenvatting

Dit onderzoek bestudeerde de relatie tussen technostress en verloopintentie. Gebaseerd op het Job Demands-Resources model en eerder empirisch onderzoek werd er een rechtstreekse positieve samenhang verwacht tussen vijf technostressoren (techno-overlading, techno-invasie, techno-complexiteit, techno-onveiligheid en technoonzekerheid) en verloopintentie. Tevens werd een mediërende rol van burn-out verwacht. Resultaten, bekomen via een cross-sectioneel vragenlijstonderzoek bij 1691 werknemers in België, bieden evidentie voor een positieve samenhang tussen drie technostressoren (technooverlading, techno-invasie en techno-onveiligheid) en verloopintentie. Verder bleek burn-out deze relaties volledig of gedeeltelijk te mediëren. Techno-onzekerheid bleek onverwacht negatief samen te gaan met burn-out en verloopintentie, nadat er gecontroleerd werd voor de andere technostressoren. De theoretische en praktische implicaties van dit onderzoek worden aangegeven.

Loading

Article metrics loading...

/content/journals/10.5117/GO2023.1.001.SPAR
2023-03-01
2024-06-20
Loading full text...

Full text loading...

References

  1. Ahmad, U. N. U., Amin, S. M., & Ismail, W. K. W. (2010). Technostress and organisational commitment: A proposed framework. Malaysia Management Review, 45(1), 35-50.
    [Google Scholar]
  2. Ahuja, M. K., Chudoba, K. M., Kacmar, C. J., McKnight, D. H., & George, J. F. (2007). IT road warriors: Balancing work-family conflict, job autonomy, and work overload to mitigate turnover intentions. Management Information System Quarterly, 31(1), 1-17. https://doi.org/10.2307/25148778
    [Google Scholar]
  3. Arnold, H. J., & Feldman, D. C. (1982). A multivariate analysis of the determinants of job turnover. Journal of Applied Psychology, 67(3), 350-360. https://doi.org/10.1037/0021-9010.67.3.350
    [Google Scholar]
  4. Ashill, N. J., & Rod, M. (2011). Burn-out processes in non-clinical health service encounters. Journal of Business Research, 64(10), 1116-1127. https://doi.org/10.1016/j.jbusres.2010.11.004
    [Google Scholar]
  5. Baka, L. (2015). Does job burnout mediate negative effects of job demands on mental and physical health in a group of teachers? Testing the energetic process of job demands-resources model. International Journal of Occupational Medicine and Environmental Health, 28(2), 335-346. https://doi.org/10.13075/ijomeh.1896.00246
    [Google Scholar]
  6. Bakker, A. B., & Demerouti, E. (2007). The Job Demands-Resources model: State of the art. Journal of Managerial Psychology, 22(3), 309-328. https://doi.org/10.1108/02683940710733115
    [Google Scholar]
  7. Bakker, A. B., Demerouti, E., & Verbeke, W. (2004). Using the Job Demands-Resources model to predict burnout and performance. Human Resource Management, 43(1), 83-104. https://doi.org/10.1002/hrm.20004
    [Google Scholar]
  8. Bakker, A. B., Schaufeli, W. B., & Demerouti, E. (1999). Werkstressoren, energiebronnen en burn-out: Het WEB model. In J.Winnubst, F.Schuur, & J.Dam (Red.), Praktijkboek gezond werken: Integrale oplossingen voor somatische, psychische en psychosociale klachten in de organisatie (pp. 1-19). Elsevier.
    [Google Scholar]
  9. Belzunegui-Eraso, A., & Erro-Garcés, A. (2020). Teleworking in the context of the Covid-19 crisis. Sustainability, 12(9), 3662. https://doi.org/10.3390/su12093662
    [Google Scholar]
  10. Boyer-Davis, S. (2019). Technostress: An antecedent of job turnover intention in the accounting profession. Journal of Business and Accounting, 12(1), 49-63.
    [Google Scholar]
  11. Brivio, E., Gaudioso, F., Vergine, I., Mirizzi, C. R., Reina, C., Stellari, A., & Galimberti, C. (2018). Preventing technostress through positive technology. Frontiers in Psychology, 9, 1-5. https://doi.org/10.3389/fpsyg.2018.02569
    [Google Scholar]
  12. Brod, C. (1984). Technostress: The human cost of the computer revolution. Basic Books.
    [Google Scholar]
  13. Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11(2), 296-325. https://doi.org/10.1177/1094428107300343
    [Google Scholar]
  14. Conger, A. J. (1974). A revised definition for suppressor variables: A guide to their identification and interpretation. Educational and Psychological Measurement, 34(1), 35-46. https://doi.org/10.1177/001316447403400105
    [Google Scholar]
  15. Daeleman, A. (2011). Technostress, burn-out en de modererende rol van computer self-efficacy: Een onderzoek bij administratief bedienden in Vlaanderen (Master’s thesis, Universiteit Gent). https://docplayer.nl/36120590-Technostress-burnout-en-de-modererende-rol-van-computer-self-efficacy-een-onderzoek-bijadministratief-bedienden-in-vlaanderen.html
    [Google Scholar]
  16. De Jong, T., Wiezer, N., De Weerd, M., Nielsen, K., Mattila-Holappa, P., & Mockałło, Z. (2016). The impact of restructuring on employee well-being: A systematic review of longitudinal studies. Work & Stress, 30(1), 91-114. https://doi.org/10.1080/02678373.2015.1136710
    [Google Scholar]
  17. Delarue, A. (2009). Teamwerk: de stress getemd? Een multilevelonderzoek naar het effect van organisatieontwerp en teamwerk op het welbevinden bij werknemers in de metaalindustrie. Doctoral Dissertation Faculty of Social Sciences, KU Leuven.
    [Google Scholar]
  18. Demerouti, E., Nachreiner, F., Bakker, A. B., & Schaufeli, W. B. (2001). The Job Demands-Resources model of burnout. Journal of Applied Psychology, 86(3), 499-512. https://doi.org/10.1037/0021-9010.86.3.499
    [Google Scholar]
  19. Demetriou, C., Özer, B. U., & Essau, C. A. (2015). Self-report questionnaires. In R. L.Cautin & S. O.Lilienfeld (Eds.), The encyclopedia of clinical psychology (pp. 2595-2600). John Wiley & Sons.
    [Google Scholar]
  20. Dos Santos, B., & Sussman, L. (2000). Improving the return on IT investment: The productivity paradox. International Journal of Information Management, 20(6), 429-431. https://doi.org/10.1016/S0268-4012(00)00037-2
    [Google Scholar]
  21. Eapen, C., Kumar, B., & Bhat, A. K. (2010). Prevalence of cumulative trauma disorders in cell phone users. Journal of Musculoskeletal Research, 13(3), 137-145. https://doi.org/10.1142/S0218957710002545
    [Google Scholar]
  22. Farshi, S. S., & Omranzadeh, F. (2014). The effect of gender, education level, and marital status on Iranian EFL teachers’ burnout level. International Journal of Applied Linguistics and English Literature, 3(5), 128-133. https://doi.org/10.7575/aiac.ijalel.v.3n.5p.128
    [Google Scholar]
  23. Fogarty, T. J., Singh, J., Rhoads, G. K., & Moore, R. K. (2000). Antecedent and consequences of burnout in accounting: Beyond the role stress model. Behavioral Research in Accounting, 12(1), 31-67.
    [Google Scholar]
  24. Griffeth, R. W., Hom, P. W., & Gaertner, S. (2000). A meta-analysis of antecedents and correlates of employee turnover: Update, moderator tests, and research implications for the next millennium. Journal of Management, 26(3), 463-488. https://doi.org/10.1177/014920630002600305
    [Google Scholar]
  25. Hakanen, J. J., Bakker, A. B., & Schaufeli, W. B. (2006). Burnout and work engagement among teachers. Journal of School Psychology, 43(6), 495-513. https://doi.org/10.1016/j.jsp.2005.11.001
    [Google Scholar]
  26. Hakanen, J. J., Schaufeli, W. B., & Ahola, K. (2008). The Job Demands-Resources model: A three-year cross-lagged study of burnout, depression, commitment and work engagement. Work & Stress, 22(3), 224-241. https://doi.org/10.1080/02678370802379432
    [Google Scholar]
  27. Hung, W. H., Chang, L. M., & Lin, C. H. (2011). Managing the risk of overusing mobile phones in the working environment: A study of ubiquitous technostress. The 15th PACIS, Brisbane, Australia. https://aisel.aisnet.org/pacis2011/81
    [Google Scholar]
  28. Jena, R. K. (2015). Impact of technostress on job satisfaction: An empirical study among Indian academician. The International Technology Management Review, 5(3), 117-124. https://doi.org/10.2991/itmr.2015.5.3.1
    [Google Scholar]
  29. Kar, S., & Suar, D. (2014). Role of burnout in the relationship between job demands and job outcomes among Indian nurses. Vikalpa, 39(4), 23-38. https://doi.org/10.1177/02560909201404
    [Google Scholar]
  30. Knardahl, S., & Ursin, H. (1985). Sustained activation and the pathophysiology of hypertension and coronary heart disease. In J. F.Orlebeke, G.Mulder, & L. J. P.Van Doornen (Eds.), Psychophysiology of cardiovascular control: Models, methods, and data (pp. 151-167). Plenum Press.
    [Google Scholar]
  31. Kupersmith, J. (1992). Technostress and the reference librarian. Reference Services Review, 20(2), 7-50. https://doi.org/10.1108/eb049150
    [Google Scholar]
  32. Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer publishing company.
    [Google Scholar]
  33. Lee, R. T., & Ashforth, B. E. (1996). A meta-analytic examination of the correlates of the three dimensions of job burn-out. Journal of Applied Psychology, 81(2), 123-133. https://doi.org/10.1037/0021-9010.81.2.123
    [Google Scholar]
  34. Lei, C. F., & Ngai, E. W. T. (2014). The double-edged nature of technostress on work performance: A research model and research agenda. In 35th International Conference on Information Systems (ICIS 2014): Building a better world through information systems. Auckland, New Zealand. https://core.ac.uk/reader/301363420
    [Google Scholar]
  35. Leiter, M. P., & Maslach, C. (2009). Nurse turnover: The mediating role of burnout. Journal of Nursing Management, 17(3), 331-339. https://doi.org/10.1111/j.1365-2834.2009.01004.x
    [Google Scholar]
  36. Llorens, S., Bakker, A. B., Schaufeli, W. B., & Salanova, M. (2006). Testing the robustness of the Job Demands-Resources model. International Journal of Stress Management, 13(3), 378-391. https://doi.org/10.1037/1072-5245.13.3.378
    [Google Scholar]
  37. Llorens, S., Salanova, M., & Ventura, M. (2011). Guias de intervencion: Tecnoestres [Intervention guidelines: Technostress]. Sintesis.
    [Google Scholar]
  38. Ludlow, L., & Klein, K. (2014). Suppressor variables: The difference between ‘is’ versus ‘acting as’. Journal of Statistics Education, 22(2), 1-28. https://doi.org/10.1080/10691898.2014.11889703
    [Google Scholar]
  39. Mahapatra, M., & Pati, P. S. (2018). Technostress creators and burnout: A Job Demands-Resources perspective. Conference Paper. https://doi.org/10.1145/3209626.3209711
    [Google Scholar]
  40. Marchand, A., Blanc, M. E., & Beauregard, N. (2018). Do age and gender contribute to workers’ burnout symptoms?Occupational Medicine, 68(6), 405-411. https://doi.org/10.1093/occmed/kqy088
    [Google Scholar]
  41. Maslach, C., Schaufeli, W. B., & Leiter, M. P. (2001). Job burnout. Annual Review of Psychology, 52, 397-422. https://doi.org/10.1146/annurev.psych.52.1.397
    [Google Scholar]
  42. Miller, J. G., & Wheeler, K. G. (1992). Unraveling the mysteries of gender differences in intentions to leave the organization. Journal of Organizational Behavior, 13(5), 465-478. https://doi.org/10.1002/job.4030130504
    [Google Scholar]
  43. Moore, J. E. (2000). One road to turnover: An examination of work exhaustion in technology professionals. Management Information System Quarterly, 24(1), 141-168. https://doi.org/10.2307/3250982
    [Google Scholar]
  44. Moreno-Jiménez, B., Gálvez-Herrer, M., Rodríguez-Carvajal, R., & Sanz Vergel, A. I. (2012). A study of physicians’ intention to quit: The role of burnout, commitment and difficult doctor-patient interactions. Psicothema, 24(2), 263-270.
    [Google Scholar]
  45. Muthén, L. K., & Muthén, B. O. (2013). Mplus: Statistical analysis with latent variables. User’s guide (version 7.11). Mutén and Muthén.
    [Google Scholar]
  46. Nikolova, I., van Dam, K., Van Ruysseveldt, J., & De Witte, H. (2019). Feeling weary? Feeling insecure? Are all workplace changes bad news?International Journal of Environmental Research and Public Health, 16(10), 1842. https://doi.org/10.3390/ijerph16101842
    [Google Scholar]
  47. Palmer, K., Ciccarelli, M., Falkmer, T., & Parsons, R. (2014). Associations between exposure to Information and Communication Technology (ICT) and reported discomfort among adolescents. Work, 48(2), 165-173. https://doi.org/10.3233/WOR-131609
    [Google Scholar]
  48. Peeters, M. C. (2020). Duurzame werkprestaties in tijden van digitalisering: Van paradox naar potentie. Gedrag & Organisatie, 33(3), 163-183. https://doi.org/10.5117/2020.033.003.001
    [Google Scholar]
  49. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. https://doi.org/10.1037/0021-9010.88.5.879
    [Google Scholar]
  50. Popma, J. (2012). Techno-stress: Verkenning van een risico in opkomst. Onderzoek in opdracht van de vakcentrale FNV. Hugo Sinzheimer Instituut.
    [Google Scholar]
  51. Popoola, S. O., & Olalude, F. O. (2013). Work values, achievement motivation and technostress as determinants of job burnout among library personnel in automated federal university libraries in Nigeria. Library Philosophy and Practice (e-journal), 1-31.
    [Google Scholar]
  52. Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879-891. https://doi.org/10.3758/BRM.40.3.879
    [Google Scholar]
  53. Price, J., & Mueller, C. (1986). Handbook of organizational measurement. Pitman.
    [Google Scholar]
  54. Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417-433. https://doi.org/10.1287/isre.1070.0165
    [Google Scholar]
  55. Rindfleisch, A., Malter, A. J., Ganesan, S., & Moorman, C. (2008). Cross-sectional versus longitudinal survey research: Concepts, findings, and guidelines. Journal of Marketing Research, 45(3), 261-279. https://doi.org/10.1509/jmkr.45.3.261
    [Google Scholar]
  56. Rosenfield, M. (2016). Computer vision syndrome (aka digital eye strain). Optometry in Practice, 17(1), 1-10.
    [Google Scholar]
  57. Salanova, M., Grau, R., Cifre, E., & Llorens, S. (2000). Computer training, frequency of use and burnout: The moderating role of computer self-efficacy. Computers in Human Behaviour, 16(6), 575-590. https://doi.org/10.1016/S0747-5632(00)00028-5
    [Google Scholar]
  58. Salanova, M., Llorens, S., & Ventura, M. (2014). Technostress: The dark side of technologies. In C.Korunka & P.Hoonakker (Eds.), The impact of ICT on quality of working life (pp. 87-103). Springer.
    [Google Scholar]
  59. Salanova, M., & Schaufeli, W. B. (2000). Exposure to information technology and its relation to burnout. Behaviour and Information Technology, 19(5), 385-392. https://doi.org/10.1080/014492900750000081
    [Google Scholar]
  60. Scanlan, J. N., & Still, M. (2019). Relationships between burnout, turnover intention, job satisfaction, job demands and job resources for mental health personnel in an Australian mental health service. BMC Health Services Research19(62), 1-11. https://doi.org/10.1186/s12913-018-3841-z
    [Google Scholar]
  61. Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources and their relationship with burnout and engagement: A multisample study. Journal of Organizational Behavior, 25(3), 293-315. https://doi.org/10.1002/job.248
    [Google Scholar]
  62. Schaufeli, W. B., De Witte, H., & Desart, S. (2019). Handleiding Burn-out Assessment Tool (BAT). KU Leuven, België.
    [Google Scholar]
  63. Schaufeli, W. B., Keijsers, G. J., & Reis Miranda, D. (1995). Burnout, technology use and ICU-performance. In S. L.Sauter & L. R.Murphy (Eds.), Organizational risk factors for job stress (pp. 259-271). APA Books.
    [Google Scholar]
  64. Schaufeli, W. B., & Taris, T. W. (2005). The conceptualization and measurement of burnout: Common ground and worlds apart. Work & Stress, 19(3), 256-262. https://doi.org/10.1080/02678370500385913
    [Google Scholar]
  65. Schaufeli, W. B., & Taris, T. W. (2014). A critical review of the job demands-resources model: Implications for improving work and health. Bridging occupational, organizational and public health, 43-68. https://doi.org/10.1007/978-94-007-5640-3_4
    [Google Scholar]
  66. Schaufeli, W. B., & Van Dierendonck, D. (2000). UBOS Utrechtse Burn-out Schaal: Handleiding. Swets & Zeitlinger.
    [Google Scholar]
  67. Sezer, F. (2012). Examining of teacher burnout level in terms of some variables. International Online Journal of Educational Sciences, 4(3), 617-631.
    [Google Scholar]
  68. Siha, S. M., & Monroe, R. W. (2006). Telecommuting’s past and future: A literature review and research agenda. Business Process Management Journal, 12(4), 455-482. https://doi.org/10.1108/14637150610678078
    [Google Scholar]
  69. Spiros, A. (2019). Mitigating technostress in new knowledge workers through perceived self-efficacy (Master’s thesis, University of Jyväskylä).
    [Google Scholar]
  70. Srivastava, S. C., Chandra, S., & Shirish, A. (2015). Technostress creators and job outcomes: Theorising the moderating influence of personality traits. Information Systems Journal, 25(4), 355-401. https://doi.org/10.1111/isj.12067
    [Google Scholar]
  71. Statbel, Algemene Directie Statistiek – Statistics Belgium. (2020, Juli2). Werkgelegenheid en werkloosheid: meer cijfers. https://statbel.fgov.be/nl/themas/werk-opleiding/arbeidsmarkt/werkgelegenheid-en-werkloosheid/plus
    [Google Scholar]
  72. Takase, M. (2010). A concept analysis of turnover intention: Implications for nursing management. Collegian, 17(1), 3-12. https://doi.org/10.1016/j.colegn.2009.05.001
    [Google Scholar]
  73. Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The impact of technostress on role stress and productivity. Journal of Information Management Systems, 24(1), 301-328. https://doi.org/10.2753/MIS0742-1222240109
    [Google Scholar]
  74. Tarafdar, M., Tu, Q., Ragu-Nathan, T. S., & Ragu-Nathan, B. S. (2011). Crossing to the dark side: Examining creators, outcomes, and inhibitors of technostress. Communications of the ACM, 54(9), 113-120. https://doi.org/10.1145/1995376.1995403
    [Google Scholar]
  75. Taris, T. W., Houtman, I., & Schaufeli, W. (2013). Burn-out: de stand van zaken. Tijdschrift voor arbeidsvraagstukken, 29(3), 241-257. https://doi.org/10.5117/2013.029.003.241
    [Google Scholar]
  76. Taris, T. W., & Kompier, M. A. J. (2006). Games researchers play: Extreme groups analysis and mediation analysis in longitudinal occupational health research. Scandinavian Journal of Work, Environment and Health, 32(6), 463-472. https://www.jstor.org/stable/40967598
    [Google Scholar]
  77. Ten Brummelhuis, L. L., Bakker, A. B., Hetland, J., & Keulemans, L. (2012). Do new ways of working foster work engagement?Psicothema, 24(1), 113-120. http://www.psicothema.com/pdf/3987.pdf
    [Google Scholar]
  78. Tett, R. P., & Meyer, J. P. (1993). Job-satisfaction, organizational commitment, turnover intention, and turnover: Path analyses based on meta-analytic findings. Personnel Psychology, 46(2), 259-293. https://doi.org/10.1111/j.1744-6570.1993.tb00874.x
    [Google Scholar]
  79. Thomée, S., Eklöf, M., Gustafsson, E., Nilsson, R., & Hagberg, M. (2007). Prevalence of perceived stress, symptoms of depression and sleep disturbances in relation to information and communication technology (ICT) use among young adults – An explorative prospective study. Computers in Human Behavior, 23(3), 1300-1321. https://doi.org/10.1016/j.chb.2004.12.007
    [Google Scholar]
  80. Van den Broeck, A., De Cuyper, N., De Witte, H., & Vansteenkiste, M. (2010). Not all job demands are equal: Differentiating job hindrances and job challenges in the Job Demands-Resources model. European Journal of Work and Organizational Psychology, 19(6), 735-759. https://doi.org/10.1080/13594320903223839.
    [Google Scholar]
  81. Van den Broeck, A., Van Ruysseveldt, J., Vanbelle, E., & De Witte, H. (2013). The Job Demands-Resources model: Overview and suggestions for future research. In A. B.Bakker (Ed.), Advances in positive organizational psychology (vol. 1, pp. 83-105). Emerald Group Publishing.
    [Google Scholar]
  82. Wang, K., Shu, Q., & Tu, Q. (2008). Technostress under different organizational environments: An empirical investigation. Computers in Human Behavior, 24(6), 3002-3013. https://doi.org/10.1016/j.chb.2008.05.007
    [Google Scholar]
  83. Weil, M. M., & Rosen, L. D. (1997). Technostress: Coping with technology @work @ home @play. John Wiley & Sons.
    [Google Scholar]
  84. Weston, R., & Gore, P. A., Jr. (2006). A brief guide to structural equation modeling. The Counseling Psychologist, 34(5), 719-751. https://doi.org/10.1177/0011000006286345
    [Google Scholar]
  85. Yang, R. J., Yang, J. Y., Yuan, H. R., & Li, J. T. (2017). Techno-stress of teachers: An empirical investigation from China. DEStech Transactions on Social Science, Education and Human Science, 603-608.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/GO2023.1.001.SPAR
Loading
/content/journals/10.5117/GO2023.1.001.SPAR
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error