Athec | Amsterdam University Press Journals Online
2004
Volume 4 Number 1
  • E-ISSN: 2665-9085

Abstract

Abstract

Visual aesthetics are related to a broad range of communication and psychological outcomes, yet the tools of computational aesthetic analysis are not widely available in the social science community. In this article, I address this gap and provide a tutorial on measuring hand-crafted aesthetic attributes, such as colorfulness and visual complexity. I introduce Athec, a Python library for computational aesthetic analysis in social science research. Furthermore, a case study applies Athec to compare the visual aesthetics of Instagram posts from the two candidates in the 2016 U.S. presidential election, Hillary Clinton and Donald Trump, indicating how amateurishness and authenticity are reflected in politicians’ visual messages. With computational aesthetic analysis tools, communication researchers can better understand the antecedents and outcomes of visual aesthetics beyond visual media content.

Loading

Article metrics loading...

/content/journals/10.5117/CCR2022.1.009.PENG
2022-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/26659085/4/1/CCR2022.1.009.PENG.html?itemId=/content/journals/10.5117/CCR2022.1.009.PENG&mimeType=html&fmt=ahah

References

  1. Amirshahi, S. A., Hayn-Leichsenring, G. U., Denzler, J., & Redies, C. (2014). Evaluatingthe rule of thirds in photographs and paintings.Art & Perception, 2(1–2), 163–182.
    [Google Scholar]
  2. Bahrami, K., & Kot, A. C. (2014). A fast approach for no-reference image sharpnessassessment based on maximum local variation. IEEE Signal Processing Letters, 21(6), 751–755.
    [Google Scholar]
  3. Bakhshi, S., & Gilbert, E. (2015). Red, purple and pink: The colors of diffusion on pinterest.PloS one, 10(2), e0117148.
    [Google Scholar]
  4. Bo, Y., Yu, J., & Zhang, K. (2018). Computational aesthetics and applications.Visual Computing for Industry, Biomedicine, and Art, 1(1), 6.
    [Google Scholar]
  5. Brachmann, A., & Redies, C. (2017). Computational and experimental approaches to visual aesthetics.Frontiers in Computational Neuroscience, 11, 102.
    [Google Scholar]
  6. Bradski, G. (2000). The OpenCV library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25(11), 120–123.
    [Google Scholar]
  7. Constantin, M. G., Redi, M., Zen, G., & Ionescu, B. (2019). Computational understanding of visual interestingness beyond semantics: Literature survey and analysis of covariates. ACM Computing Surveys, 52(2), 1–37.
    [Google Scholar]
  8. Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In European conference on computer vision (pp. 288–301).
    [Google Scholar]
  9. Deza, A., & Parikh, D. (2015). Understanding image virality. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1818–1826).
    [Google Scholar]
  10. Dhar, S., Ordonez, V., & Berg, T. L. (2011). High level describable attributes for predicting aesthetics and interestingness. In IEEE computer society conference on computer vision and pattern recognition (pp. 1657–1664).
    [Google Scholar]
  11. Elliot, A. J., & Maier, M. A. (2014). Color psychology: Effects of perceiving color on psychological functioning in humans. Annual Review of Psychology, 65, 95–120.
    [Google Scholar]
  12. Enli, G. (2017). Twitter as arena for the authentic outsider: Exploring the social media campaigns of trump and clinton in the 2016 us presidential election.European Journal of Communication, 32(1), 50–61.
    [Google Scholar]
  13. Fairchild, M. D. (2013). Color appearance models. John Wiley & Sons.
    [Google Scholar]
  14. Fisher, R., Perkins, S., Walker, A., & Wolfart, E. (2003). The hypermedia image processing reference.https://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm
    [Google Scholar]
  15. Guntuku, S. C., Buffone, A., Jaidka, K., Eichstaedt, J. C., & Ungar, L. H. (2019). Understanding and measuring psychological stress using social media. In Proceedings of the international AAAI conference on web and social media (Vol. 13, pp. 214–225).
    [Google Scholar]
  16. Ha, Y., Park, K., Kim, S. J., Joo, J., & Cha, M. (2020). Automatically detecting image–text mismatch on Instagram with deep learning. Journal of Advertising, 50(1), 52–62.
    [Google Scholar]
  17. Hasler, D., & Suesstrunk, S. E. (2003, June). Measuring colorfulness in natural images. In Human vision and electronic imaging VIII (Vol. 5007, pp. 87–95). International Society for Optics and Photonics.
    [Google Scholar]
  18. Hoenig, F. (2005). Defining computational aesthetics. Computational Aesthetics in Graphics, Visualization and Imaging, 13–18.
    [Google Scholar]
  19. Hübner, R., & Fillinger, M. G. (2016). Comparison of objective measures for predicting perceptual balance and visual aesthetic preference.Frontiers in Psychology, 7, 335.
    [Google Scholar]
  20. Ibraheem, N. A., Hasan, M. M., Khan, R. Z., & Mishra, P. K. (2012). Understanding color models: A review.ARPN Journal of Science and Technology, 2(3), 265–275.
    [Google Scholar]
  21. Isola, P., Xiao, J., Torralba, A., & Oliva, A. (2011). What makes an image memorable? In Proceedings of the 2011 IEEE conference on computer vision and pattern (pp. 145–152).
    [Google Scholar]
  22. Joo, J., Bucy, E. P., & Seidel, C. (2019). Automated coding of televised leader displays: Detecting nonverbal political behavior with computer vision and deep learning.International Journal of Communication, 13, 4044–4066.
    [Google Scholar]
  23. Joo, J., & Steinert-Threlkeld, Z. C. (2018). Image as data: Automated visual content analysis for political science.https://arxiv.org/abs/1810.01544
    [Google Scholar]
  24. Ke, Y., Tang, X., & Jing, F. (2006). The design of high-level features for photo quality assessment. In 2006 IEEE computer society conference on computer vision and pattern recognition (Vol. 1, pp. 419–426).
    [Google Scholar]
  25. Khosla, A., Das Sarma, A., & Hamid, R. (2014). What makes an image popular? In Proceedings of the 23rd international conference on world wide web (pp. 867–876).
    [Google Scholar]
  26. Kim, Y., & Kim, J. H. (2018). Using computer vision techniques on Instagram to link users’ personalities and genders to the features of their photos: An exploratorystudy. Information Processing & Management, 54(6), 1101–1114.
    [Google Scholar]
  27. King, A. J., Lazard, A. J., & White, S. R. (2020). The influence of visual complexity on initial user impressions: testing the persuasive model of web design.Behaviour & Information Technology, 39(5), 497–510.
    [Google Scholar]
  28. Kong, S., Shen, X., Lin, Z., Mech, R., & Fowlkes, C. (2016). Photo aesthetics ranking network with attributes and content adaptation. In European conference on computer vision (pp. 662–679).
    [Google Scholar]
  29. Labrecque, L. I., & Milne, G. R. (2012). Exciting red and competent blue: the importance of color in marketing.Journal of the Academy of Marketing Science, 40(5), 711–727.
    [Google Scholar]
  30. Lazard, A., & Mackert, M. (2014). User evaluations of design complexity: The impact of visual perceptions for effective online health communication. International Journal of Medical Informatics, 83(10), 726–735.
    [Google Scholar]
  31. Liu, L., Preotiuc-Pietro, D., Samani, Z. R., Moghaddam, M. E., & Ungar, L. H. (2016). Analyzing personality through social media profile picture choice. In Tenth international AAAI conference on web and social media.(pp. 211–220).
    [Google Scholar]
  32. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150–1157).
    [Google Scholar]
  33. Lu, X., Suryanarayan, P., Adams Jr, R. B., Li, J., Newman, M. G., & Wang, J. Z. (2012). On shape and the computability of emotions. In Proceedings of the 20th ACM international conference on multimedia (pp. 229–238).
    [Google Scholar]
  34. Machajdik, J., & Hanbury, A. (2010). Affective image classification using features inspired by psychology and art theory. In Proceedings of the 18th ACM international conference on multimedia (pp. 83–92).
    [Google Scholar]
  35. Mai, L., Le, H., Niu, Y., Lai, Y.-C., & Liu, F. (2012). Detecting rule of simplicity from photos. In Proceedings of the 20th ACM international conference on multimedia (pp. 1149–1152).
    [Google Scholar]
  36. Mai, L., Le, H., Niu, Y., & Liu, F. (2011). Rule of thirds detection from photograph. In 2011 IEEE international symposium on multimedia (pp. 91–96).
    [Google Scholar]
  37. Matz, S. C., Segalin, C., Stillwell, D., Müller, S. R., & Bos, M. W. (2019). Predicting the personal appeal of marketing images using computational methods. Journal of Consumer Psychology, 29(3), 370–390.
    [Google Scholar]
  38. Messing, S., Jabon, M., & Plaut, E. (2016). Bias in the flesh: Skin complexion and stereotype consistency in political campaigns. Public Opinion Quarterly, 80(1), 44–65.
    [Google Scholar]
  39. Miniukovich, A., & De Angeli, A. (2016). Pick me! getting noticed on google play. In Proceedings of the 2016 CHI conference on human factors in computing systems (pp. 4622–4633).
    [Google Scholar]
  40. Morgan, S. E., Palmgreen, P., Stephenson, M. T., Hoyle, R. H., & Lorch, E. P. (2003). Associations between message features and subjective evaluations of the sensation value of antidrug public service announcements.Journal of Communication, 53(3), 512–526.
    [Google Scholar]
  41. Murashka, V., Liu, J., & Peng, Y. (2021). Fitspiration on Instagram: Identifying topic clusters in user comments to posts with objectification features. Health Communication, 36(12), 1537–1548.
    [Google Scholar]
  42. Nanni, L., Ghidoni, S., & Brahnam, S. (2017). Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognition, 71, 158–172.
    [Google Scholar]
  43. O’Keefe, D. J. (2003). Message properties, mediating states, and manipulation checks: Claims, evidence, and data analysis in experimental persuasive message effects research.Communication Theory, 13(3), 251–274.
    [Google Scholar]
  44. Peng, Y. (2017). Time travel with one click: Effects of digital filters on perceptions of photographs. In Proceedings of the 2017 CHI conference on human factors in computing systems (pp. 6000–6011).
    [Google Scholar]
  45. Peng, Y. (2018). Same candidates, different faces: Uncovering media bias in visual portrayals of presidential candidates with computer vision. Journal of Communication, 68(5), 920–941.
    [Google Scholar]
  46. Peng, Y. (2021). What makes politicians’ Instagram posts popular? Analyzing social media strategies of candidates and office holders with computer vision.The International Journal of Press/Politics, 26(1), 143–166.
    [Google Scholar]
  47. Peng, Y., & Jemmott III, J. B. (2018). Feast for the eyes: Effects of food perceptions and computer vision features on food photo popularity. International Journal of Communication, 12.
    [Google Scholar]
  48. Pieters, R., Wedel, M., & Batra, R. (2010). The stopping power of advertising: Measures and effects of visual complexity. Journal of Marketing, 74(5), 48–60.
    [Google Scholar]
  49. Reece, A. G., & Danforth, C. M. (2017). Instagram photos reveal predictive markers of depression. EPJ Data Science, 6(1), 1–12.
    [Google Scholar]
  50. Reinecke, K., Yeh, T., Miratrix, L., Mardiko, R., Zhao, Y., Liu, J., & Gajos, K. Z. (2013). Predicting users’ first impressions of website aesthetics with a quantification of perceived visual complexity and colorfulness. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 2049–2058).
    [Google Scholar]
  51. Rosebrock, A. (2017). Deep learning for computer vision with python. https://pyimagesearch.com/deep-learning-computer-vision-python-book/
    [Google Scholar]
  52. Stephen, I. D., Smith, M. J. L., Stirrat, M. R., & Perrett, D. I. (2009). Facial skin coloration affects perceived health of human faces. International Journal ofPrimatology, 30(6), 845–857.
    [Google Scholar]
  53. Sutton, J. A., Yang, S., & Cappella, J. N. (2019). Perceived effectiveness of objective features of pictorial warning messages.Tobacco Control, 28(e1), e24–e30.
    [Google Scholar]
  54. Talebi, H., & Milanfar, P. (2018). NIMA: Neural image assessment. IEEE Transactions on Image Processing, 27(8), 3998–4011.
    [Google Scholar]
  55. Thömmes, K., & Hübner, R. (2018). Instagram likes for architectural photos can be predicted by quantitative balance measures and curvature. Frontiers in Psychology, 9, 1050.
    [Google Scholar]
  56. Totti, L. C., Costa, F. A., Avila, S., Valle, E., Meira Jr, W., & Almeida, V. (2014). The impact of visual attributes on online image diffusion. In Proceedings of the 2014 ACM conference on web science (pp. 42–51).
    [Google Scholar]
  57. Umbaugh, S. E. (2010). Digital image processing and analysis: human and computer vision applications with CVIPtools. CRC press.
    [Google Scholar]
  58. Valdez, P., & Mehrabian, A. (1994). Effects of color on emotions. Journal of Experimental Psychology: General, 123(4), 394–409.
    [Google Scholar]
  59. Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., … Yu, T. (2014). scikit-image: image processing in python. PeerJ, 2, e453.
    [Google Scholar]
  60. Van De Weijer, J., Schmid, C., & Verbeek, J. (2007). Learning color names from real-world images. In 2007 IEEE conference on computer vision and pattern recognition (pp. 1–8).
    [Google Scholar]
  61. Vermeir, I., & Roose, G. (2020). Visual design cues impacting food choice: A review and future research agenda. Foods, 9(10), 1495.
    [Google Scholar]
  62. Williams, N. W., Casas, A., & Wilkerson, J. D. (2020). Images as data for social science research: An introduction to convolutional neural nets for image classification.Cambridge University Press.
    [Google Scholar]
  63. Zhang, H., & Peng, Y. (Forthcoming). Image clustering: An unsupervised approach to categorize visual data in social science research. Sociological Methods & Research.
    [Google Scholar]
  64. Zhao, S., Gao, Y., Jiang, X., Yao, H., Chua, T.-S., & Sun, X. (2014). Exploring principles- of-art features for image emotion recognition. In Proceedings of the 22nd ACM international conference on multimedia (pp. 47–56).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/CCR2022.1.009.PENG
Loading
/content/journals/10.5117/CCR2022.1.009.PENG
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error