2004
Volume 110, Issue 4
  • ISSN: 0002-5275
  • E-ISSN: 2352-1244

Abstract

Abstract

This article discusses the connection between the Zenonian paradox of magnitude and probability on infinite sample spaces. Two important premises in the Zenonian argument are: the Archimedean axiom, which excludes infinitesimal magnitudes, and perfect additivity. Standard probability theory uses real numbers that satisfy the Archimedean axiom, but it rejects perfect additivity. The additivity requirement for real-valued probabilities is limited to countably infinite collections of mutually incompatible events. A consequence of this is that there exists no standard probability function that describes a fair lottery on the natural numbers. If we reject the Archimedean axiom, allowing infinitesimal probability values, we can retain perfect additivity and describe a fair, countable infinite lottery. The article gives a historical overview to understand how the first option has become the current standard, whereas the latter remains ‘non-standard’.

Loading

Article metrics loading...

/content/journals/10.5117/ANTW2018.4.006.WENM
2018-12-01
2021-06-22
Loading full text...

Full text loading...

/deliver/fulltext/00025275/110/4/06_ANTW2018.4.WENM.html?itemId=/content/journals/10.5117/ANTW2018.4.006.WENM&mimeType=html&fmt=ahah

References

  1. Alexander, A.(2014)Infinitesimal: How a dangerous mathematical theory shaped the modern world. London: Oneworld.
    [Google Scholar]
  2. Benci, V., L.Horsten, S.Wenmackers(2013)Non-Archimedean probability, Milan Journal of Mathematics81, pp. 121-151.
    [Google Scholar]
  3. Benci, V., L.Horsten, S.Wenmackers(2018)Infinitesimal probabilities, The British Journal for Philosophy of Science69, pp. 509-552.
    [Google Scholar]
  4. Berkeley, G.(1734)The Analyst; a Discourse Addressed to an Infidel Mathematician. London: Strand.
    [Google Scholar]
  5. Bos, H.J.M.(1974)Differentials, higher-order differentials and the derivative in the Leibnizian calculus, Archive for History of Exact Sciences14, pp. 1-90.
    [Google Scholar]
  6. Carnap, R.(1980)The problem of a more general concept of regularity, in: R.C.Jeffrey (red.) Studies in Inductive Logic and Probability, Vol. 2. University of California Press, pp. 145-155.
    [Google Scholar]
  7. de Finetti, B.(1972)Probability, Induction and Statistics; The Art of Guessing. Wiley.
    [Google Scholar]
  8. de l’Hôpital, G.(1696)Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes. Paris: Imprimerie Royal. Gedigitaliseerd door Linda Hall Library of Science, Engineering & Technology; URL: lhldigital.lindahall.org/cdm/ref/collection/math/id/21037.
    [Google Scholar]
  9. Devlin, K.(2010)The unfinished game: Pascal, Fermat, and the seventeenth-century letter that made the world modern. New York: Basic Books.
    [Google Scholar]
  10. Dijksterhuis, E.J. (1934-1944) Archimedes, Euclides11-20; Hoofdstuk X correspondeert met Euclides17 (1940-1941) Gedigitaliseerd door Luuk Hoevenaars; URL https://goo.gl/dzwo2K.
    [Google Scholar]
  11. du Bois-Reymond, P.(1877)Ueber die Paradoxen des Infinitärcalcüls, Mathematische Annalen11, pp. 149-167.
    [Google Scholar]
  12. du Bois-Reymond, P.(1882)Die allgemeine Functionentheorie. Tübingen: H.Laupp. URL: doi:10.14463/GBV:895066262.
    [Google Scholar]
  13. Ehrlich, P.(2006)The rise of non-Archimedean mathematics and the roots of a misconception I: The emergence of non-Archimedean systems of magnitudes, Archive for History of Exact Sciences60, pp. 1-121.
    [Google Scholar]
  14. Fisher, G.(1981)The infinite and infinitesimal quantities of du Bois-Reymond and their reception, Archive for History of Exact Sciences24, pp. 101-163.
    [Google Scholar]
  15. Grünbaum, A.(1952)A consistent conception of the extended linear continuum as an aggregate of unextended elements, Philosophy of Science19, pp. 288-306.
    [Google Scholar]
  16. Hall, A.R.(1980)Philosophers at War: The Quarrel between Newton and Gottfried Leibniz. Cambridge: Cambridge University Press.
    [Google Scholar]
  17. Hewitt, E.(1948)Rings of real-valued continuous functions I, Transactions of the American Mathematical Society64, pp. 54-99.
    [Google Scholar]
  18. Hilbert, D.(1900)Mathematische Probleme, Göttinger Nachrichten, pp. 253-297.
    [Google Scholar]
  19. Katz, M.G., D.Schaps, S.Shnider(2013)Almost equal: The method of adequality from Diophantus to Fermat and beyond, Perspectives on Science21, pp. 283-324.
    [Google Scholar]
  20. Łoś, J.(1955)Quelques remarques, théorèmes, et problèmes sur les classes définissables d’algèbres. In: Mathematical Interpretation of Formal Systems (Symposium, Amsterdam 1954), Vol. 98 of Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland, pp. 1-13.
    [Google Scholar]
  21. Mancosu, P.(2009)Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable?The Review of Symbolic Logic2, pp. 612-646.
    [Google Scholar]
  22. Nelson, E.(1987)Radically elementary probability theory. Annals of Mathematical Studies Vol. 117, Princeton: Princeton University Press.
    [Google Scholar]
  23. Norton, J.D.(2003)Causation as folk science, Philosophers’ Imprint3, pp. 1-22.
    [Google Scholar]
  24. Owen, G.E.L. (1957-1958) Zeno and the mathematicians, Proceedings of the Aristotelian Society58, pp. 199-222.
    [Google Scholar]
  25. Pascal, B. (1670; 1932) Pensées, editie van M.Le Guern; heruitgave(2004)Folio classiqueVol. 4054, Paris: Gallimard.
    [Google Scholar]
  26. Shimony, A.(1955)Coherence and the axioms of confirmation, The Journal of Symbolic Logic20, pp. 1-28.
    [Google Scholar]
  27. Skolem, Th.(1934)Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fundamenta Mathematicae23, pp. 150-161.
    [Google Scholar]
  28. Skyrms, B.(1983)Zeno’s paradox of measure, in: R.S.Cohen en L.Laudan (red.) Physics, philosophy and psychoanalysis. Springer, Dordrecht, pp. 223-254.
    [Google Scholar]
  29. Robinson, A.(1961)Non-standard analysis, Proceedings of the Royal Academy of Sciences, Amsterdam, ser. A, 64, pp. 432-440.
    [Google Scholar]
  30. Robinson, A.(1966)Non-Standard Analysis. Amsterdam: North-Holland.
    [Google Scholar]
  31. van Aardenne-Ehrenfest, T.(1945)Proof of the impossibility of a just distribution of an infinite sequence of points over an interval, Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen48, pp. 266-271.
    [Google Scholar]
  32. van Aardenne-Ehrenfest, T.(1949)On the impossibility of a just distribution, Proceedings of the Koninklijke Nederlandse Akademie Van Wetenschappen52, pp. 734-739.
    [Google Scholar]
  33. Wallis, J.(1656)Arithmetica Infinitorum. Engelse vertaling: J.A.Stedall(2004)The Arithmetic of Infinitesimals. New York: Springer.
    [Google Scholar]
  34. Wenmackers, S.(2011)Philosophy of Probability: Foundations, Epistemology, and Compu­tation. Proefschrift, Rijksuniversiteit Groningen. URL: hdl.handle.net/11370/144e89d0-0229-495d-8f05-89aa20c79b4b.
    [Google Scholar]
  35. Wenmackers, S., en L.Horsten(2013)Fair infinite lotteries, Synthese190, pp. 37-61.
    [Google Scholar]
  36. Wenmackers, S. (aanvaard) Infinitesimal probability – an opinionated introduction, in: 
R.Pettigrew en J.Weisberg (red.), Open Handbook of Formal Epistemology.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.5117/ANTW2018.4.006.WENM
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error