2004
Volume 41, Issue 4
  • ISSN: 0169-2216
  • E-ISSN: 2468-9424

Abstract

Samenvatting

De ontwikkelingen in artificial intelligence (AI) hebben belangrijke gevolgen voor de toekomst van werk. De snelle adoptie van (generatieve) AI heeft aanzienlijke juridische en ethische zorgen opgeroepen voor het managen van werknemers, vooral in het licht van de AI-Verordening (AI Act) van de Europese Unie. Dit artikel richt zich op de implicaties van de AI-Verordening voor hrm-praktijken, door te onderzoeken welke implicaties deze wetgeving heeft voor het managen en AI-geletterd maken van personeel. Door inzichten uit zowel juridisch als hr-perspectief te combineren, analyseren we welke vraagstukken ontstaan bij het gebruik van AI. We bieden eerst een overzicht van de juridische componenten van het gebruik van AI onder de nieuwe EU-wetgeving en analyseren vervolgens de rol van AI-geletterdheid voor het waarborgen van verantwoord AI-gebruik. We stellen dat AI-geletterdheid essentieel is voor het beperken van (juridische) risico’s en dat het tegelijkertijd een eerlijke en transparante toekomst van werk bevordert. Ons conceptuele artikel sluit af met bredere implicaties en praktische aanbevelingen voor managers en suggesties voor vervolgonderzoek.

Loading

Article metrics loading...

/content/journals/10.5117/TVA2025.4.008.RENK
2025-12-01
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/01692216/41/4/TVA2025.4.008.RENK.html?itemId=/content/journals/10.5117/TVA2025.4.008.RENK&mimeType=html&fmt=ahah

References

  1. Autoriteit Persoonsgegevens (2025). AI-verordening. Geraadpleegd in mei2025 van https://www.autoriteitpersoonsgegevens.nl/themas/algoritmes-ai/ai-verordening
    [Google Scholar]
  2. Batool, A., Zowghi, D., & Bano, M. (2025). AI Governance: A Systemic Literature review. AI and Ethics, 5(3), 3265-3279.
    [Google Scholar]
  3. Bench-Capon, T., Araszkiewicz, M., Ashley, K., Atkinson, K., Bex, F., Borges, F., Bourcier, D., Bourgine, P., Conrad, J. G., Francesconi, E., Gordon, T. F., Govenatori, G., Leidner, J. L., Lewis, D. D., Loui, R. P., Thorne McCarty, L., Prakken, H., Schilder, F., Schweighofer, E., … Wyner, A.Z. (2012). A history of AI and Law in 50 papers: 25 years of the international conference on AI and Law. Artificial Intelligence and Law, 20(3), 215-319. https://doi.org/10.1007/s10506-012-9131-x
    [Google Scholar]
  4. Bondarouk, T., Bos-Nehles, A., Renkema, M., Meijerink, J., & De Leede, J. (2018). Organisational roadmap towards teal organisations. Emerald Group Publishing.
    [Google Scholar]
  5. Bos-Nehles, A. C., Van Riemsdijk, M. J., & Kees Looise, J. (2013). Employee perceptions of line management performance: applying the AMO theory to explain the effectiveness of line managers’ HRM implementation. Human resource management, 52(6), 861-877. https://doi.org/10.1002/hrm.21578
    [Google Scholar]
  6. Brattinga, I., & Cuijpers, C. (2024). ChatGPT in recruitment – (geen) goede match! Het juridisch speelveld in vogelvlucht. Tijdschrift voor HRM, 27(1), 23-45. https://doi.org/10.5117/THRM2024.1.002.BRAT
    [Google Scholar]
  7. Budhwar, P., Chowdhury, S., Wood, G., Aguinis, H., Bamber, G. J., Beltran, J. R., Boselie, P., Cooke, F. L., Decker, S., DeNisi, A., Dey, P. K., Guest, D., Knoblich, A. J., Malik, A., Paauwe, J., Papagiannidis, S., Patel, C., Pereira, V., Ren, S., … Varma, A. (2023). Human resource management in the age of generative artificial intelligence: Perspectives and research directions on ChatGPT. Human Resource Management Journal, 33(3), 606-659. https://doi.org/10.1111/1748-8583.12524
    [Google Scholar]
  8. Budhwar, P., Malik, A., De Silva, M. T., & Thevisuthan, P. (2022). Artificial intelligence–challenges and opportunities for international HRM: a review and research agenda. The International Journal of Human Resource Management, 33(6), 1065-1097. https://doi.org/10.1080/09585192.2022.2035161
    [Google Scholar]
  9. Burnett, C., Eandi, S. F., Ehlers, R., & Engfeldt, H. (2024). The legal playbook for AI in HR: Five practical steps to help mitigate your risk. The Employer Report. Geraadpleegd in mei2025 van https://www.theemployerreport.com/2024/11/the-legal-playbook-for-ai-in-hr-five-practical-steps-to-help-mitigate-your-risk/
    [Google Scholar]
  10. Cameron, R., Herrmann, H., & Nankervis, A. (2024). Mapping the evolution of algorithmic HRM (AHRM): a multidisciplinary synthesis. Humanities and Social Sciences Communications, 11(1), 1-14. https://doi.org/10.1057/s41599-024-02786-z
    [Google Scholar]
  11. Camps, J., & Luna-Arocas, R. (2012). A matter of learning: How human resources affect organizational performance. British Journal of Management, 23(1), 1-21. https://doi.org/10.1111/j.1467-8551.2010.00714.x
    [Google Scholar]
  12. Cheng, M. M., & Hackett, R. D. (2021). A critical review of algorithms in HRM: Definition, theory, and practice. Human Resource Management Review, 31(1).
    [Google Scholar]
  13. Clardy, A. (2003). The legal framework of human resource development: overview, mandates, structures and financial implications. Human Resources Development Review, 2(1), 26-53.
    [Google Scholar]
  14. Corrales, M., Fenwick, M., & Forgo, N. (2018). Robotics, AI and the future of law.Springer.
    [Google Scholar]
  15. Diefenhardt, F. (2025). Automating the managerial gaze: critical and genealogical notes on machine learning in personnel assessment. The International Journal of Human Resource Management. https://doi.org/10.1080/09585192.2025.2470302
    [Google Scholar]
  16. Dima, J., Gilbert, M. H., Dextras-Gauthier, J., & Giraud, L. (2024). The effects of artificial intelligence on human resource activities and the roles of the human resource triad: Opportunities and challenges. Frontiers in Psychology, 15, 1360401. https://doi.org/10.3389/fpsyg.2024.1360401
    [Google Scholar]
  17. Doorey, D. J., & Dukes, R. (2025). What is human resources law?Industrial Law Journal, 54(3), 565-596. https://doi.org/10.1093/indlaw/dwae047
    [Google Scholar]
  18. Drent, E., Renkema, M., & Bos-Nehles, A. (2022). Reconceptualizing the HRM role of the line manager in the age of artificial intelligence. In K.Townsend, A.Bos-Nehles, & K.Jiang (Reds.), Research Handbook on Line Managers (pp. 367-387). Edward Elgar Publishing.
    [Google Scholar]
  19. European Union Artificial Intelligence Act (z.d.). Implementation timeline. Geraadpleegd in mei2025 , van https://artificialintelligenceact.eu/implementation-timeline/
    [Google Scholar]
  20. Europese Commissie (2019, 8april). Ethische richtsnoeren voor betrouwbare KI. Geraadpleegd in mei2025, van https://digital-strategy.ec.europa.eu/nl/library/ethics-guidelines-trustworthy-ai
    [Google Scholar]
  21. Europese Commissie (2025, 10juli). Contents of the code of conduct for generative AI. Digital Strategy. Geraadpleegd in september2025 van https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai
    [Google Scholar]
  22. Europese Unie (2024). Verordening (EU) 2024/1689 van het Europees Parlement en de Raad. https://eur-lex.europa.eu/legal-content/NL/TXT/?uri=CELEX:32024R1689
    [Google Scholar]
  23. Gartner (2024). Artificial Intelligence in HR: position your organization for Success. https://www.gartner.com/en/human-resources/topics/artificial-intelligence-in-hr.
    [Google Scholar]
  24. Gerhart, B. (2007). Horizontal and vertical fit in human resource systems. In C.Ostroff, & T. A.Judge (Reds.), Perspectives on organizational fit (pp. 317-348). Lawrence Erlbaum Associates Publishers.
    [Google Scholar]
  25. Härtel, T. M., Schuler, B. A., & Back, M. D. (2024). ‘LinkedIn, LinkedIn on the screen, who is the greatest and smartest ever seen?’: A machine learning approach using valid LinkedIn cues to predict narcissism and intelligence. Journal of Occupational and Organizational Psychology, 97(4), 1572-1602. https://doi.org/10.1111/joop.12531
    [Google Scholar]
  26. Hatzius, J., Briggs, J., Kodnani, D., & Pierdomenico, G. (z.d.). Generative AI could raise global GDP by 7%. Geraadpleegd in mei2025, van https://www.goldmansachs.com/insights/articles/generative-ai-could-raise-global-gdp-by-7-percent.
    [Google Scholar]
  27. Johnson, R. D., Stone, D. L., & Lukaszewski, K. M. (2021). The benefits of eHRM and AI for talent acquisition. Journal of Tourism Futures, 7(1), 40-52. https://doi.org/10.1108/JTF-02-2020-0013
    [Google Scholar]
  28. Johnstone, R. (2016). Using legal research methods in human resource management research. In K.Townsend, R.Loudoun, & D.Lewin (Reds.), Handbook of Qualitative Research Methods on Human Resource Management (pp. 61-73). Edward Elgar Publishing.
    [Google Scholar]
  29. Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at work: The new contested terrain of control. Academy of Management Annals, 14(1), 366-410. https://doi.org/10.5465/annals.2018.0174
    [Google Scholar]
  30. Kelan, E. K. (2024). Algorithmic inclusion: Shaping the predictive algorithms of artificial intelligence in hiring. Human Resource Management Journal, 34(3), 694-707. https://doi.org/10.1111/1748-8583.12511
    [Google Scholar]
  31. Köchling, A., & Wehner, M. C. (2020). Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Business Research, 13(3), 795-848. https://doi.org/10.1007/s40685-020-00134-w
    [Google Scholar]
  32. Leicht-Deobald, U., Busch, T., Schank, C., Weibel, A., Schafheitle, S., Wildhaber, I., & Kasper, G. (2022). The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity. Journal of Business Ethics, 160(2), 377-392. https://doi.org/10.1007/s10551-019-04204-w
    [Google Scholar]
  33. Long, D., & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1-16. https://doi.org/10.1145/3313831.3376727
    [Google Scholar]
  34. Lorek, L. A. (2024). AI legal innovations: The benefits and drawbacks of Chat-GPT and generative AI in the legal industry. Ohio Northern University Law Review, 50(3), 513-531.
    [Google Scholar]
  35. Ma, X., & Brown, T. W. (2020). AI-mediated exchange theory. https://arxiv.org/abs/2003.02093
    [Google Scholar]
  36. Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal of Human Resource Management, 32(12), 2545-2562. https://doi.org/10.1080/09585192.2021.1925326
    [Google Scholar]
  37. Murphy, K. R. (2018). The legal context of the management of human resources. Annual Review of Organizational Psychology and Organizational Behavior, 5(1), 157-182. https://doi.org/10.1146/annurev-orgpsych-032117-104435
    [Google Scholar]
  38. Nishii, L. H., & Wright, P. M. (2008). Variability within organizations: Implications for strategic human resources management. In D. B.Smith (Red.), The people make the place: Dynamic linkages between individuals and organizations (pp. 225-248). Taylor & Francis Group/Lawrence Erlbaum Associates.
    [Google Scholar]
  39. Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2023). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multiprocess perspective. Human Resource Management Review, 33(1). https://doi.org/10.1016/j.hrmr.2021.100857
    [Google Scholar]
  40. Pinski, M., & Benlian, A. (2024). AI literacy for users – A comprehensive review and future research directions of learning methods, components, and effects. Computers in Human Behavior: Artificial Humans, 2(1), 100062. https://doi.org/10.1016/j.chbah.2024.100062
    [Google Scholar]
  41. Renkema, M. (2024). HR en het gebruik van AI. Brightmine. https://www.brightmine.com/nl/tools-artikelen/whitepapers/resultaten-benchmark-onderzoek-hr-gebruik-ai/
    [Google Scholar]
  42. Renkema, M., Van den Boom-Muilenburg, E., Friso-van den Bos, I., Theelen, H., Wopereis, I., & Schildkamp, K., (2025). AI-GO! Een Raamwerk voor AI-Geletterdheid in het Onderwijs (AI-GO Raamwerk). Npuls AI- en Data geletterdheid.
    [Google Scholar]
  43. Renkema, M., Bos-Nehles, A., & Meijerink, J. (2020). Implications of self-managing teams for the HRM function. Baltic Journal of Management, 15(4), 533-550. https://doi.org/10.1108/BJM-06-2018-0230
    [Google Scholar]
  44. Renkema, M., & Sanders, J. (2025). Algoritmisch HRM: slim aan het werk met AI? Een bloemlezing van bijdrages in het themanummer Algoritmisch HRM. Tijdschrift voor HRM, 28(3), 1-12. https://doi.org/10.5117/THRM2025.3.009.RENK
    [Google Scholar]
  45. Rissland, E. L., Ashley, K. D., & Loui, R. P. (2003). AI and law: A Fruitful Synergy. Artificial Intelligence, 150(1/2), 1-15. https://doi.org/10.1016/S0004-3702(03)00122-X
    [Google Scholar]
  46. Rodriguez, J. K., Johnstone, S., & Procter, S. (2017). Regulation of work and employment: advances, tensions and future directions in research in international and comparative HRM. The International Journal of Human Resource Management,28(21), 2957-2982. https://doi.org/10.1080/09585192.2017.1416555
    [Google Scholar]
  47. Scheibmayr, I., & Reichel, A. (2023). Beating the advertising drum for the employer: How legal context translates into good HRM Practice. Human Resource Management Journal, 33(1), 95-114. https://doi.org/10.1111/1748-8583.12413
    [Google Scholar]
  48. Schlund, R., & Zitek, E. M. (2024). Algorithmic versus human surveillance leads to lower perceptions of autonomy and increased resistance. Communications Psychology, 2(1), 53. https://doi.org/10.1038/s44271-024-00102-8
    [Google Scholar]
  49. Tambe, P. T., Cappelli, P., Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 14-42. https://doi.org/10.1177/0008125619867910
    [Google Scholar]
  50. Von Lewinski, K., & Fritz, R. D. B. (2022). Legitimacy of artificial intelligence in human resources – the legal framework for using artificial intelligence in human resource management. In S.Strohmeier (Red.), Handbook of research on artificial intelligence in human resource management (pp. 337-351). Edward Elgar Publishing.
    [Google Scholar]
  51. Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: a systematic review. The International Journal of Human Resource Management, 33(6), 1237-1266. https://doi.org/10.1080/09585192.2020.1871398
    [Google Scholar]
  52. Zaidan, E., & Ibrahim, I. A. (2024). AI governance in a complex and rapidly changing regulatory landscape: A global perspective. Humanities and Social Sciences Communications, 11(1), 1-18. https://doi.org/10.1057/s41599-024-03560-x
    [Google Scholar]
/content/journals/10.5117/TVA2025.4.008.RENK
Loading
/content/journals/10.5117/TVA2025.4.008.RENK
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error