2004
Volume 28, Issue 1
  • E-ISSN: 1388-1302

Abstract

Abstract NL

Algoritmisch management (AM) verwijst naar het gebruik van data en algoritmes om HR-taken en beslissingen te automatiseren of te ondersteunen (Lee et al., 2015; Meijerink et al., 2021; Parent-Rocheleau & Parker, 2022). Het betreft taken en beslissingen waar traditioneel de (lijn)manager verantwoordelijk voor is, zoals prestatiemanagement of taakverdeling. De algoritmes verwerken data, zoals prestatiescores of werkroosters, en zetten deze om in concrete output, zoals feedback of optimale toewijzing van taken. Uit wetenschappelijke literatuur blijkt dat AM potentieel voor- en nadelen heeft. Hoewel het kan bijdragen tot meer efficiëntie, effectiviteit en innovatie, toont onderzoek dat het ook leidt tot uitdagingen voor werknemerswelzijn (Kellogg et al., 2020; Parent-Rocheleau & Parker, 2022). Dit artikel, gebaseerd op de belangrijkste resultaten van een promotieonderzoek, verkent drie onderzoeksvragen die relevante inzichten opleveren voor HR-professionals en onderzoekers met het oog op werknemerswelzijn, met name: (1) Hoe beïnvloedt AM het engagement van medewerkers en welke rol speelt de leidinggevende in deze relatie? (2) Hoe beïnvloedt AM de autonomie in het werk, en welke rol spelen de gepercipieerde rechtvaardigheid van het AM en de proactiviteit van de werknemer in deze relatie? (3) Hoe geven medewerkers betekenis aan verregaande vormen van AM en de impact ervan op hun welzijn? Uit dit onderzoek blijkt ten eerste dat AM de sociale uitwisselingsrelatie tussen organisatie en medewerker, gebaseerd op wederzijds vertrouwen, beïnvloedt. Meer specifiek wordt de uitwisselingsrelatie minder sociaal en meer economisch, wat inhoudt dat medewerkers de relatie als een zuiver economische transactie zien eerder dan een wisselwerking gebaseerd op vertrouwen en sociale interactie. Hierdoor neemt het engagement van werknemers af. Dit negatieve effect kan echter gebufferd worden door een leidinggevende die dichtbij de werknemers staat. Ten tweede is AM negatief gerelateerd aan autonomie in het werk. Deze negatieve relatie blijkt voornamelijk sterk wanneer de werknemer het AM als onrechtvaardig ervaart, en neutraal wanneer die het als rechtvaardig ervaart. Bijkomend blijkt de negatieve relatie tussen AM en autonomie in het geval van een onrechtvaardig gepercipieerd AM het sterkst negatief bij proactieve werknemers. Tot slot blijkt dat werknemers geen passieve ontvangers hoeven zijn van AM. Wanneer geconfronteerd met zeer geavanceerde AM-toepassingen reflecteren ze over hoe AM hun welzijn beïnvloedt en geven ze aan te zullen negotiëren over de grenzen van zulke systemen. Het artikel sluit af met aanbevelingen voor HR-professionals die overwegen AM (verder) te implementeren.

Loading

Article metrics loading...

/content/journals/10.5117/THRM2025.1.001.LIU
2025-02-06
2025-03-23
Loading full text...

Full text loading...

/deliver/fulltext/13881302/28/1/THRM2025.1.001.LIU.html?itemId=/content/journals/10.5117/THRM2025.1.001.LIU&mimeType=html&fmt=ahah

References

  1. Adekoya, O. D., Mordi, C., Ajonbadi, H. A., & Chen, W. (2023). Implications of algorithmic management on careers and employment relationships in the gig economy–a developing country perspective. Information Technology & People.
    [Google Scholar]
  2. Alhejaili, R., & Alomainy, A. (2023). The Use of Wearable Technology in Providing Assistive Solutions for Mental Well-Being. Sensors, 23(17), Article 17. https://doi.org/10.3390/s23177378
    [Google Scholar]
  3. Aloisi, A., & De Stefano, V. (2022). Essential jobs, remote work and digital surveillance: Addressing the COVID-19 pandemic panopticon. International Labour Review, 161(2), 289–314. Scopus. https://doi.org/10.1111/ilr.12219
    [Google Scholar]
  4. Alvesson, M., & Sandberg, J. (2013). Constructing research questions: Doing interesting research. SAGE.
    [Google Scholar]
  5. Amershi, S., Weld, D., Vorvoreanu, M., Fourney, A., Nushi, B., Collisson, P., Suh, J., Iqbal, S., Bennett, P. N., Inkpen, K., Teevan, J., Kikin-Gil, R., & Horvitz, E. (2019). Guidelines for Human-AI Interaction. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, 1–13. https://doi.org/10.1145/3290605.3300233
    [Google Scholar]
  6. Antonakis, J., & Atwater, L. (2002). Leader distance: A review and a proposed theory. The Leadership Quarterly, 13(6), 673–704. https://doi.org/10.1016/S1048-9843(02)00155-8
    [Google Scholar]
  7. Araujo, T., Helberger, N., Kruikemeier, S., & de Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & SOCIETY, 35(3), 611–623. https://doi.org/10.1007/s00146-019-00931-w
    [Google Scholar]
  8. Ashforth, B. (1989). The Experience of Powerlessness in Organizations. Organizational Behavior and Human Decision Processes, 43, 207–242. https://doi.org/10.1016/0749-5978(89)90051-4
    [Google Scholar]
  9. Bankins, S., & Formosa, P. (2023). The Ethical Implications of Artificial Intelligence (AI) For Meaningful Work. Journal of Business Ethics, 185(4), 725–740. https://doi.org/10.1007/s10551-023-05339-7
    [Google Scholar]
  10. Bankins, S., Formosa, P., Griep, Y., & Richards, D. (2022). AI Decision Making with Dignity? Contrasting Workers’ Justice Perceptions of Human and AI Decision Making in a Human Resource Management Context. Information Systems Frontiers, 24(3), 857–875. Scopus. https://doi.org/10.1007/s10796-021-10223-8
    [Google Scholar]
  11. Bateman, T. S., & Crant, J. M. (1993). The Proactive Component of Organizational Behavior: A Measure and Correlates. Journal of Organizational Behavior, 14(2), 103–118.
    [Google Scholar]
  12. Bazzani, G. (2023). Futures in action: Expectations, imaginaries and narratives of the future. Sociology, 57(2), 382-397.
    [Google Scholar]
  13. BBC (30/7/2024). https://www.bbc.com/news/business-56718036 (gecheckt op 21/1/2025).
  14. Beunza, D. (2019). Taking the Floor: Models, Morals, and Management in a Wall Street Trading Room. Princeton University Press.
    [Google Scholar]
  15. Blau, P. (2017). Exchange and Power in Social Life (2nd ed.). Routledge. https://doi.org/10.4324/9780203792643
    [Google Scholar]
  16. Braganza, A., Chen, W., Canhoto, A., & Sap, S. (2021). Productive employment and decent work: The impact of AI adoption on psychological contracts, job engagement and employee trust. Journal of Business Research, 131, 485–494. https://doi.org/10.1016/j.jbusres.2020.08.018
    [Google Scholar]
  17. Braun, V., & Clarke, V. (2013). Successful qualitative research: A practical guide for beginners. SAGE.
    [Google Scholar]
  18. Bujold, A., Parent-Rocheleau, X., & Gaudet, M.-C. (2022). Opacity behind the wheel: The relationship between transparency of algorithmic management, justice perception, and intention to quit among truck drivers. Computers in Human Behavior Reports, 8. Scopus. https://doi.org/10.1016/j.chbr.2022.100245
    [Google Scholar]
  19. Bullock, J. B., Chen, Y.-C., Himmelreich, J., Hudson, V. M., Korinek, A., Young, M. M., & Zhang, B. (2024). The Oxford Handbook of AI Governance. Oxford University Press.
    [Google Scholar]
  20. Burrell, J.How the machine ‘thinks’: understanding opacity in machine learning algorithms. Big Data Soc.(2016).
    [Google Scholar]
  21. Cherns, A. (1976). The Principles of Sociotechnical Design. Human Relations, 29(8), 783–792. https://doi.org/10.1177/001872677602900806
    [Google Scholar]
  22. Chowdhury, S., Joel-Edgar, S., Dey, P. K., Bhattacharya, S., & Kharlamov, A. (2022). Embedding transparency in artificial intelligence machine learning models: Managerial implications on predicting and explaining employee turnover. The International Journal of Human Resource Management, 0(0), 1–32. https://doi.org/10.1080/09585192.2022.2066981
    [Google Scholar]
  23. Colquitt, J. A. (2001). On the dimensionality of organizational justice: A construct validation of a measure. Journal of Applied Psychology, 86(3), 386–400. https://doi.org/10.1037/0021-9010.86.3.386
    [Google Scholar]
  24. Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches.
    [Google Scholar]
  25. Cropanzano, R., & Mitchell, M. S. (2005). Social Exchange Theory: An Interdisciplinary Review. Journal of Management, 31(6), 874–900. https://doi.org/10.1177/0149206305279602
    [Google Scholar]
  26. Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-resources model of burnout. Journal of Applied Psychology, 86(3), 499–512. https://doi.org/10.1037/0021-9010.86.3.499
    [Google Scholar]
  27. Duggan, J., Sherman, U., Carbery, R., & Mcdonnell, A. (2020). Algorithmic management and app-work in the gig economy: A research agenda for employment relations and HRM. Human Resource Management Journal, 30. https://doi.org/10.1111/1748-8583.12258
    [Google Scholar]
  28. Dupuis, M. (2024). Algorithmic management and control at work in a manufacturing sector: Workplace regime, union power and shopfloor conflict over digitalisation. New Technology, Work and Employment, n/a(n/a). https://doi.org/10.1111/ntwe.12298
    [Google Scholar]
  29. Egede, L. E., Walker, R. J., & Williams, J. S. (2024). Addressing Structural Inequalities, Structural Racism, and Social Determinants of Health: A Vision for the Future. Journal of General Internal Medicine, 39(3), 487–491. https://doi.org/10.1007/s11606-023-08426-7
    [Google Scholar]
  30. Eyal, P., David, R., Andrew, G., Zak, E., & Ekaterina, D. (2021). Data quality of platforms and panels for online behavioral research. Behavior research methods, 1-20.
    [Google Scholar]
  31. Floridi, L., & Cowls, J. (2022). A Unified Framework of Five Principles for AI in Society. In Machine Learning and the City (pp. 535–545). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119815075.ch45
    [Google Scholar]
  32. Fosso Wamba, S., Bawack, R. E., Guthrie, C., Queiroz, M. M., & Carillo, K. D. A. (2021). Are we preparing for a good AI society? A bibliometric review and research agenda. Technological Forecasting and Social Change, 164, 120482. https://doi.org/10.1016/j.techfore.2020.120482
    [Google Scholar]
  33. Gagné, M., Parent-Rocheleau, X., Bujold, A., & Lirio, P. (2022). How Algorithmic Management Influences Worker Motivation: A Self-Determination Theory Perspective. Canadian Psychology/Psychologie Canadienne, 63, 247–260. https://doi.org/10.1037/cap0000324
    [Google Scholar]
  34. Galière, S. (2020). When food-delivery platform workers consent to algorithmic management: a Foucauldian perspective. New Technology, Work and Employment, 35(3), 357-370.
    [Google Scholar]
  35. Grant, A. M., Christianson, M. K., & Price, R. H. (2007). Happiness, Health, or Relationships? Managerial Practices and Employee Well-Being Tradeoffs. Academy of Management Perspectives, 21(3), 51–63. https://doi.org/10.5465/amp.2007.26421238
    [Google Scholar]
  36. Hackman, J. R., & Oldham, G. R. (1976). Motivation through the design of work: Test of a theory. Organizational Behavior and Human Performance, 16(2), 250–279. https://doi.org/10.1016/0030-5073(76)90016-7
    [Google Scholar]
  37. Heffernan, M., & Dundon, T. (2016). Cross-level effects of high-performance work systems (HPWS) and employee well-being: The mediating effect of organisational justice. Human Resource Management Journal, 26(2), 211–231. https://doi.org/10.1111/1748-8583.12095
    [Google Scholar]
  38. Jabagi, N., Croteau, A.-M., Audebrand, L. K., & Marsan, J. (2019). Gig-workers’ motivation: Thinking beyond carrots and sticks. Journal of Managerial Psychology, 34(4), 192–213. Scopus. https://doi.org/10.1108/JMP-06-2018-0255
    [Google Scholar]
  39. Jarrahi, M. H. (2019). In the age of the smart artificial intelligence: AI’s dual capacities for automating and informating work. Business Information Review, 36(4), 178–187. Scopus. https://doi.org/10.1177/0266382119883999
    [Google Scholar]
  40. Jarrahi, M. H., Newlands, G., Lee, M. K., Wolf, C. T., Kinder, E., & Sutherland, W. (2021). Algorithmic management in a work context. Big Data & Society, 8(2), 20539517211020332. https://doi.org/10.1177/20539517211020332
    [Google Scholar]
  41. Jarrahi, M. H., & Sutherland, W. (2019). Algorithmic management and algorithmic competencies: Understanding and appropriating algorithms in gig work. In Information in Contemporary Society: 14th International Conference, iConference 2019, Washington, DC, USA, March 31–April 3, 2019, Proceedings 14 (pp. 578-589). Springer International Publishing.
    [Google Scholar]
  42. Kadirov, A., Shakirova, Y., Ismoilova, G., & Makhmudova, N. (2024, April). AI in Human Resource Management: Reimagining Talent Acquisition, Development, and Retention. In 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) (Vol. 1, pp. 1-8). IEEE.
    [Google Scholar]
  43. Kanat-Maymon, Y., & Reizer, A. (2017). Supervisors’ autonomy support as a predictor of job performance trajectories. Applied Psychology, 66(3), 468-486.
    [Google Scholar]
  44. Kellogg, K. C., Valentine, M. A., & Christin, A. (2020). Algorithms at Work: The New Contested Terrain of Control. Academy of Management Annals, 14(1), 366–410. https://doi.org/10.5465/annals.2018.0174
    [Google Scholar]
  45. Kinowska, H., & Sienkiewicz, Ł. J. (2023). Influence of algorithmic management practices on workplace well-being–evidence from European organisations. Information Technology & People, 36(8), 21-42.
    [Google Scholar]
  46. Knight, C., Patterson, M., & Dawson, J. (2019). Work engagement interventions can be effective: a systematic review. European Journal of Work and Organizational Psychology, 28(3), 348-372.
    [Google Scholar]
  47. Lavelle, J. J., Rupp, D. E., & Brockner, J. (2007). Taking a multifoci approach to the study of justice, social exchange, and citizenship behavior: The target similarity model. Journal of management, 33(6), 841-866.
    [Google Scholar]
  48. Lee, M. K. (2018). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5(1), 2053951718756684. https://doi.org/10.1177/2053951718756684
    [Google Scholar]
  49. Lee, M. K., Kusbit, D., Metsky, E., & Dabbish, L. (2015). Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, 1603–1612. https://doi.org/10.1145/2702123.2702548
    [Google Scholar]
  50. Lee, H. W., Pak, J., Kim, S., & Li, L. Z. (2019). Effects of human resource management systems on employee proactivity and group innovation. Journal of management, 45(2), 819-846.
    [Google Scholar]
  51. Leicht-Deobald, U., Busch, T., Schank, C., Weibel, A., Schafheitle, S., Wildhaber, I., & Kasper, G. (2019). The Challenges of Algorithm-Based HR Decision-Making for Personal Integrity. Journal of Business Ethics, 160(2), 377–392. https://doi.org/10.1007/s10551-019-04204-w
    [Google Scholar]
  52. Leventhal, G. S. (1980). What Should Be Done with Equity Theory? In K. J.Gergen, M. S.Greenberg, & R. H.Willis (Eds.), Social Exchange: Advances in Theory and Research (pp. 27–55). Springer US. https://doi.org/10.1007/978-1-4613-3087-5_2
    [Google Scholar]
  53. Liu, N. (2024). Algorithmic Management and Wellbeing at Work: An Integrated Analysis of Quantitative and Qualitative Approaches. Supervisors: De Winne, S., De Cooman, R. & Di Guida, S.
    [Google Scholar]
  54. Liu, R., & Yin, H. (2024). How Algorithmic Management Influences Gig Workers’ Job Crafting. Behavioral Sciences, 14(10), 952.
    [Google Scholar]
  55. Malik, A., Budhwar, P., Patel, C., & Srikanth, N. R. (2022). May the bots be with you! Delivering HR cost-effectiveness and individualised employee experiences in an MNE. The International Journal of Human Resource Management, 33(6), 1148–1178. https://doi.org/10.1080/09585192.2020.1859582
    [Google Scholar]
  56. Meijerink, J., & Bondarouk, T. (2021). The duality of algorithmic management: Toward a research agenda on HRM algorithms, autonomy and value creation. Human Resource Management Review, 100876. https://doi.org/10.1016/j.hrmr.2021.100876
    [Google Scholar]
  57. Meijerink, J., Boons, M., Keegan, A., & Marler, J. (2021). Algorithmic human resource management: Synthesizing developments and cross-disciplinary insights on digital HRM. The International Journal of Human Resource Management, 32(12), 2545–2562. https://doi.org/10.1080/09585192.2021.1925326
    [Google Scholar]
  58. Möhlmann, M., & Zalmanson, L. (2017). Hands on the wheel: Navigating algorithmic management and Uber drivers’ autonomy.
    [Google Scholar]
  59. Morgan, G., & Smircich, L. (1980). The Case for Qualitative Research. Academy of management review, 5(4), 491-500.
    [Google Scholar]
  60. Morgeson, F. P., Delaney-Klinger, K., & Hemingway, M. A. (2005). The Importance of Job Autonomy, Cognitive Ability, and Job-Related Skill for Predicting Role Breadth and Job Performance. Journal of Applied Psychology, 90(2), 399–406. https://doi.org/10.1037/0021-9010.90.2.399
    [Google Scholar]
  61. Morgeson, F. P., & Humphrey, S. E. (2006). The Work Design Questionnaire (WDQ): Developing and validating a comprehensive measure for assessing job design and the nature of work. Journal of Applied Psychology, 91(6), 1321–1339. https://doi.org/10.1037/0021-9010.91.6.1321
    [Google Scholar]
  62. Mukumbang, F. C. (2023). Retroductive Theorizing: A Contribution of Critical Realism to Mixed Methods Research. Journal of Mixed Methods Research, 17(1), 93–114. https://doi.org/10.1177/15586898211049847
    [Google Scholar]
  63. Niaz, S. A., UI Hameed, W., Saleem, M., Bibi, S., Anwer, B., & Razzaq, S. (2020). Fourth Industrial Revolution: A Way Forward to Technological Revolution, Disruptive Innovation, and Their Effects on Employees. In Future of Work, Work-Fam. Satisf., and Empl. Well-Being in the Fourth Ind. Revolut. (pp. 297–312). IGI Global; Scopus. https://doi.org/10.4018/978-1-7998-3347-5.ch020
    [Google Scholar]
  64. Parent-Rocheleau, X., & Parker, S. K. (2022). Algorithms as work designers: How algorithmic management influences the design of jobs. Human Resource Management Review, 100838. https://doi.org/10.1016/j.hrmr.2021.100838
    [Google Scholar]
  65. Parent-Rocheleau, X., Parker, S. K., Bujold, A., & Gaudet, M. (2023). Creation of the algorithmic management questionnaire: A six-phase scale development process. Human Resource Management, hrm.22185. https://doi.org/10.1002/hrm.22185
    [Google Scholar]
  66. Parker, S. K., & Collins, C. G. (2010). Taking Stock: Integrating and Differentiating Multiple Proactive Behaviors. Journal of Management, 36(3), 633–662. https://doi.org/10.1177/0149206308321554
    [Google Scholar]
  67. Robert, L. P., Pierce, C., Marquis, L., Kim, S., & Alahmad, R. (2020). Designing fair AI for managing employees in organizations: A review, critique, and design agenda. Human–Computer Interaction, 35(5–6), 545–575. https://doi.org/10.1080/07370024.2020.1735391
    [Google Scholar]
  68. Reisdorf, B. C., & Blank, G. (2021). Algorithmic literacy and platform trust. In Handbook of digital inequality (pp. 341-357). Edward Elgar Publishing.
    [Google Scholar]
  69. Reuters, 11/10/2018. https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/ (gecheckt op 21/1/2025).
  70. Robinson, D., Perryman, S., & Hayday, S. (2004). The Drivers of Employee Engagement. The IES Research Networks.
    [Google Scholar]
  71. Rosenblat, A. (2018). Uberland: How Algorithms Are Rewriting the Rules of Work. In Uberland: How Algorithms are Rewriting the Rules of Work (p. 272). https://doi.org/10.1525/9780520970632
    [Google Scholar]
  72. Rosenblat, A., & Stark, L. (2016). Algorithmic Labor and Information Asymmetries: A Case Study of Uber’s Drivers. International Journal of Communication, 10(0), Article 0.
    [Google Scholar]
  73. Saks, A. M. (2006). Antecedents and consequences of employee engagement. Journal of managerial psychology, 21(7), 600-619.
    [Google Scholar]
  74. Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293–315. https://doi.org/10.1002/job.248
    [Google Scholar]
  75. Shore, L. M., Tetrick, L. E., Lynch, P., & Barksdale, K. (2006). Social and Economic Exchange: Construct Development and Validation. Journal of Applied Social Psychology, 36(4), 837–867. https://doi.org/10.1111/j.0021-9029.2006.00046.x
    [Google Scholar]
  76. Sun, G. (2023). Quantitative analysis of online labor platforms’ algorithmic management influence on psychological health of workers. International Journal of Environmental Research and Public Health, 20(5), 4519.
    [Google Scholar]
  77. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
    [Google Scholar]
  78. Town, S., Reina, C. S., Brummans, B. H. J. M., & Pirson, M. (2024). Humanistic Organizing: The Transformative Force of Mindful Organizational Communication. Academy of Management Review, amr.2021.0433. https://doi.org/10.5465/amr.2021.0433
    [Google Scholar]
  79. Van De Voorde, K., Paauwe, J., & Van Veldhoven, M. (2012). Employee Well-being and the HRM-Organizational Performance Relationship: A Review of Quantitative Studies: HRM, employee well-being and organizational performance. International Journal of Management Reviews, 14(4), 391–407. https://doi.org/10.1111/j.1468-2370.2011.00322.x
    [Google Scholar]
  80. Von Krogh, G. (2018). Artificial Intelligence in Organizations: New Opportunities for Phenomenon-Based Theorizing. Academy of Management Discoveries, 4(4), 404–409. https://doi.org/10.5465/amd.2018.0084
    [Google Scholar]
  81. Warr, P. (2007). Work, happiness, and unhappiness (pp. xiv, 548). Lawrence Erlbaum Associates Publishers.
    [Google Scholar]
  82. Wall, T. D., Jackson, P. R., & Mullarkey, S. (1995). Further Evidence on Some New Measures of Job Control, Cognitive Demand and Production Responsibility. Journal of Organizational Behavior, 16(5), 431–455.
    [Google Scholar]
  83. Weick, K. E. (2005). 5 Managing the Unexpected: Complexity as Distributed Sense-making. In R. R.McDaniel & D. J.Driebe (Eds.), Uncertainty and Surprise in Complex Systems: Question on Working with the Unexpected (pp. 51–65). Springer. https://doi.org/10.1007/10948637_5
    [Google Scholar]
  84. Wiener, M., Cram, W., & Benlian, A. (2021). Algorithmic control and gig workers: A legitimacy perspective of Uber drivers. European Journal of Information Systems, 1–23. https://doi.org/10.1080/0960085X.2021.1977729
    [Google Scholar]
  85. Wood, A. J., Graham, M., Lehdonvirta, V., & Hjorth, I. (2019). Good Gig, Bad Gig: Autonomy and Algorithmic Control in the Global Gig Economy. Work, Employment and Society, 33(1), 56–75. https://doi.org/10.1177/0950017018785616
    [Google Scholar]
  86. Zhang, A., Boltz, A., Wang, C. W., & Lee, M. K. (2022). Algorithmic management reimagined for workers and by workers: Centering worker well-being in gig work. In Proceedings of the 2022 CHI conference on human factors in computing systems (pp. 1-20).
    [Google Scholar]
  87. Zhang, Linzi, et al. (2023). Gig worker’s perceived algorithmic management, stress appraisal, and destructive deviant behavior. Plos one, 18(11): e0294074.
    [Google Scholar]
/content/journals/10.5117/THRM2025.1.001.LIU
Loading
/content/journals/10.5117/THRM2025.1.001.LIU
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error