2004
Volume 28, Issue 1
  • E-ISSN: 1388-1302

Abstract

Abstract NL

De zorgsector wordt in toenemende mate geconfronteerd met uitdagingen als gevolg van groeiende vraag (o.a. door vergrijzing en complexiteit van zorg) en afnemend aanbod van zorgverleners (o.a. door personeelstekorten). Kunstmatige Intelligentie (AI) wordt als mogelijke oplossing gezien, maar wordt vaak vanuit een technologisch perspectief benaderd. Dit artikel kiest een mensgerichte benadering en bestudeert hoe zorgmedewerkers het werken met AI ervaren. Dit is belangrijk omdat zij uiteindelijk met deze applicaties moeten werken om de uitdagingen in de zorg het hoofd te bieden. Op basis van 21 semigestructureerde interviews met zorgmedewerkers die AI hebben gebruikt, beschrijven we de werkervaringen met AI. Met behulp van het AMO-raamwerk - wat staat voor abilities, motivation en opportunities - laten we zien dat AI een impact heeft op het werk van zorgmedewerkers. Het gebruik van AI vereist nieuwe competenties en de overtuiging dat AI de zorg kan verbeteren. Daarbij is er een noodzaak voor voldoende beschikbaarheid van training en ondersteuning. Tenslotte bediscussiëren we de implicaties voor theorie en geven we aanbevelingen voor HR-professionals.

Loading

Article metrics loading...

/content/journals/10.5117/THRM2025.1.002.SCHO
2025-02-28
2025-03-24
Loading full text...

Full text loading...

/deliver/fulltext/13881302/28/1/THRM2025.1.002.SCHO.html?itemId=/content/journals/10.5117/THRM2025.1.002.SCHO&mimeType=html&fmt=ahah

References

  1. Akudjedu, T. N., Torre, S., Khine, R., Katsifarakis, D., Newman, D., & Malamateniou, C. (2023). Knowledge, perceptions, and expectations of Artificial intelligence in radiography practice: A global radiography workforce survey. Journal of Medical Imaging and Radiation Sciences, 54(1), 104–116. https://doi.org/10.1016/j.jmir.2022.11.016
    [Google Scholar]
  2. Alami, H., Lehoux, P., Papoutsi, C., Shaw, S. E., Fleet, R., & Fortin, J. P. (2024). Understanding the integration of artificial intelligence in healthcare organisations and systems through the NASSS framework: a qualitative study in a leading Canadian academic centre. BMC Health Services Research, 24(1), 701.
    [Google Scholar]
  3. Appelbaum, E., Bailey, T., Berg, P. & Kalleberg, A. (2000). Manufacturing advantage: Why high performance work systems pay off. New York: Cornell University Press
    [Google Scholar]
  4. Aquino, Y. S. J., Rogers, W. A., Braunack-Mayer, A., Frazer, H., Win, K. T., Houssami, N., Degeling, C., Semsarian, C., & Carter, S. M. (2023). Utopia versus dystopia: Professional perspectives on the impact of healthcare artificial intelligence on clinical roles and skills. International Journal of Medical Informatics, 169, 104903. https://doi.org/10.1016/j.ijmedinf.2022.104903
    [Google Scholar]
  5. Becker, C. (2022, October). Survey of ESR members looks at radiologists’ practical experience with AI. ESR | European Society of Radiology. https://www.myesr.org/ai-blog/current-practical-experience-with-artificial-intelligence-in-clinical-radiology-a-survey-of-the-european-society-of-radiology/
    [Google Scholar]
  6. Bleijenbergh, I. (2013). Kwalitatief onderzoek in organisaties. https://hdl.handle.net/2066/112112
    [Google Scholar]
  7. Bos-Nehles, A., Townsend, K., Cafferkey, K., & Trullen, J. (2023). Examining the Ability, Motivation and Opportunity (AMO) framework in HRM research: Conceptualization, measurement and interactions. International Journal of Management Reviews, 25(4), 725–739. https://doi.org/10.1111/ijmr.12332
    [Google Scholar]
  8. Bos-Nehles, A. C., Van Riemsdijk, M. J., & Looise, J. K. (2013). Employee Perceptions of Line Management performance: Applying the AMO theory to explain the effectiveness of line managers’ HRM implementation. Human Resource Management, 52(6), 861–877. https://doi.org/10.1002/hrm.21578
    [Google Scholar]
  9. Buck, C., Doctor, E., Hennrich, J., Jöhnk, J., & Eymann, T. (2022). General Practitioners’ Attitudes toward Artificial Intelligence–Enabled Systems: Interview study. Journal of Medical Internet Research, 24(1), e28916. https://doi.org/10.2196/28916
    [Google Scholar]
  10. Chi, E. A., Chi, G., Tsui, C. T., Jiang, Y., Jarr, K., Kulkarni, C. V., Zhang, M., Long, J., Ng, A. Y., Rajpurkar, P., & Sinha, S. R. (2021). Development and validation of an artificial intelligence system to optimize clinician review of patient records. JAMA Network Open, 4(7), e2117391. https://doi.org/10.1001/jamanetworkopen.2021.17391
    [Google Scholar]
  11. Corbin, J., & Strauss, A. (1990). Grounded Theory Research: Procedures, Canons and Evaluative Criteria. Zeitschrift für Soziologie, 19(6), 418-42
    [Google Scholar]
  12. Creswell, J. W., & Clark, V. L. P. (2011). Designing and Conducting Mixed Methods Research. SAGE.
    [Google Scholar]
  13. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94–98. https://doi.org/10.7861/futurehosp.6-2-94
    [Google Scholar]
  14. Denscombe, M. (2017). EBOOK: The good research guide: For small-scale social research projects. McGraw-Hill Education (UK).
    [Google Scholar]
  15. de Lange, A.H. et al. (2020). The Dutch Healthy Healthcare Project: Antecedents and Interventions to Facilitate Sustainable Work Ability Among Healthcare Workers. In: Tevik Løvseth, L., de Lange, A.H. (eds) Integrating the Organization of Health Services, Worker Wellbeing and Quality of Care. Springer, Cham. https://doi.org/10.1007/978-3-030-59467-1_20
    [Google Scholar]
  16. Dudovskiy, J. (2022). An Ultimate Guide to writing a dissertation in Business Studies: A Step-by-step Assistance.
    [Google Scholar]
  17. Ergin, E., Karaarslan, D., Şahan, S. et al. Can artificial intelligence and robotic nurses replace operating room nurses? The quasi-experimental research. J Robotic Surg, 17, 1847–1855 (2023). https://doi.org/10.1007/s11701-023-01592-0
    [Google Scholar]
  18. European Society of Radiology (ESR). (2019). Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights into Imaging, 10(1), 105. https://doi.org/10.1186/s13244-019-0798-3
    [Google Scholar]
  19. Fenwick, A., Molnar, G. & Frangos, P. (2024) The critical role of HRM in AI-driven digital transformation: a paradigm shift to enable firms to move from AI implementation to human-centric adoption. Discov Artif Intell, 4, 34. https://doi.org/10.1007/s44163-024-00125-4
    [Google Scholar]
  20. Fruehwirt, W., & Duckworth, P. (2021). Towards better healthcare: What could and should be automated?Technological Forecasting and Social Change, 172, 120967. https://doi.org/10.1016/j.techfore.2021.120967
    [Google Scholar]
  21. Gill, P., Stewart, K., Treasure, E., & Chadwick, B. L. (2008). Methods of data collection in qualitative research: interviews and focus groups. British Dental Journal, 204(6), 291–295. https://doi.org/10.1038/bdj.2008.192
    [Google Scholar]
  22. Huang, X., Wang, H., She, C., Feng, J., Liu, X., Hu, X., Chen, L., & Tao, Y. (2022). Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in endocrinology, 13, 946915. https://doi.org/10.3389/fendo.2022.946915
    [Google Scholar]
  23. Janowczyk, A., Leo, P., & Rubin, M. A. (2020). Clinical deployment of AI for prostate cancer diagnosis. The Lancet. Digital health, 2(8), e383–e384. https://doi.org/10.1016/S2589-7500(20)30163-1
    [Google Scholar]
  24. Kalidindi, S., & Gandhi, S. (2023). Workforce Crisis in Radiology in the UK and the Strategies to Deal With It: Is Artificial Intelligence the Saviour?. Cureus, 15(8), e43866. https://doi.org/10.7759/cureus.43866
    [Google Scholar]
  25. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25. https://doi.org/10.1016/j.bushor.2018.08.004
    [Google Scholar]
  26. Katyal, V., & Vaid, N. (2023, March). Virtual-First: A virtual workflow for new patient consultation, engagement and education in orthodontics. In Seminars in Orthodontics (Vol. 29, No. 1, pp. 109-115). WB Saunders.
    [Google Scholar]
  27. Kocaballi, A. B., Ijaz, K., Laranjo, L., Quiroz, J. C., Rezazadegan, D., Tong, H. L., Willcock, S., Berkovsky, S., & Coiera, E. (2020). Envisioning an artificial intelligence documentation assistant for future primary care consultations: A co-design study with general practitioners. Journal of the American Medical Informatics Association : JAMIA, 27(11), 1695–1704. https://doi.org/10.1093/jamia/ocaa131
    [Google Scholar]
  28. Kuhlmann, E., Falkenbach, M., Brînzac, M., Correia, T., Panagioti, M., & Ungureanu, M. (2024). The mental health needs of healthcare workers: When evidence does not guide policy. A comparative assessment of selected European countries. The International Journal of Health Planning and Management, 39(3), 614–636. https://doi.org/10.1002/hpm.3752
    [Google Scholar]
  29. Lambert, S.I., Madi, M., Sopka, S. et al. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. npj Digit. Med. 6, 111 (2023). https://doi.org/10.1038/s41746-023-00852-537
    [Google Scholar]
  30. Martinho, A., Kroesen, M., & Chorus, C. (2021). A healthy debate: Exploring the views of medical doctors on the ethics of artificial intelligence. Artificial Intelligence in Medicine, 121, 102190. https://doi.org/10.1016/j.artmed.2021.102190
    [Google Scholar]
  31. Meskó, B., Hetényi, G. & Győrffy, Z.Will artificial intelligence solve the human resource crisis in healthcare?. BMC Health Serv Res18, 545 (2018). https://doi.org/10.1186/s12913-018-3359-4
    [Google Scholar]
  32. Mosch, L., Fürstenau, D., Brandt, J., Wagnitz, J., Klopfenstein, S. A., Poncette, A. S., & Balzer, F. (2022). The medical profession transformed by artificial intelligence: Qualitative study. Digital Health, 8. https://doi.org/10.1177/20552076221143903
    [Google Scholar]
  33. Nashwan, A. J., & Abujaber, A. A. (2023). Harnessing Large Language Models in Nursing Care Planning: Opportunities, Challenges, and Ethical Considerations. Cureus, 15(6), e40542. https://doi.org/10.7759/cureus.40542
    [Google Scholar]
  34. Paauwe, J. (2009). HRM and Performance: Achievements, Methodological Issues and Prospects. Journal of Management Studies, 46(1), 129–142. https://doi.org/10.1111/j.1467-6486.2008.00809.x
    [Google Scholar]
  35. Parker, S. K., & Grote, G. (2022). More than ‘more than ever’: Revisiting a work design and sociotechnical perspective on digital technologies. Applied Psychology, 71(4), 1215–1223. https://doi.org/10.1111/apps.12425
    [Google Scholar]
  36. Pecqueux, M., Riediger, C., Distler, M., Oehme, F., Bork, U., Kolbinger, F. R., Schöffski, O., Van Wijngaarden, P., Weitz, J., Schweipert, J., & Kahlert, C. (2022). The use and future perspective of Artificial Intelligence—A survey among German surgeons. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.982335
    [Google Scholar]
  37. Poncette, A., Spies, C., Mosch, L., Schieler, M., Weber-Carstens, S., Krampe, H., & Balzer, F. (2019). Clinical requirements of future patient monitoring in the Intensive care Unit: Qualitative study. JMIR Medical Informatics, 7(2), e13064. https://doi.org/10.2196/13064
    [Google Scholar]
  38. Poon, Y. R., Lin, Y. P., Griffiths, P., Yong, K. K., Seah, B., & Liaw, S. Y. (2022). A global overview of healthcare workers’ turnover intention amid COVID-19 pandemic: a systematic review with future directions. Human resources for health, 20(1), 70. https://doi.org/10.1186/s12960-022-00764-7
    [Google Scholar]
  39. Ritchie, J., Lewis, J., Nicholls, C. M., & Ormston, R. (Eds.). (2013). Qualitative research practice: A guide for social science students and researchers. Sage.
    [Google Scholar]
  40. Samhammer, D., Roller, R., Hummel, P., Osmanodja, B., Burchardt, A., Mayrdorfer, M., Duettmann, W., & Dabrock, P. (2022). “Nothing works without the doctor:” Physicians’ perception of clinical decision-making and artificial intelligence. Frontiers in Medicine, 9. https://doi.org/10.3389/fmed.2022.1016366
    [Google Scholar]
  41. Scholz, F., Sahakian, T., Güven, N., Renkema, M., Cuijpers, C., Schouten, G., Shulzhenko, E., Wouters, E., & De Vries, E. (2024). A Scoping Review of AI in Healthcare: Redefining Roles and Work Structures for Healthcare Professionals. European Academy of Management Conference (EURAM) 2024, Bath, United Kingdom
    [Google Scholar]
  42. Sparnaaaij, K., VanEekeren, & Vasseur, J. (2023). AI MONITOR ZIEKENHUIZEN: Jaarlijks onderzoek naar de stand van AI bij Nederlandse ziekenhuizen. In M&I Partners. https://mxi.nl/kennis/613/ai-monitor-ziekenhuizen-2023
    [Google Scholar]
  43. Strohmeier, S. (2022). Handbook of Research on Artificial Intelligence in Human Resource Management. Edward Elgar Publishing.
    [Google Scholar]
  44. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and a Path Forward. California Management Review, 61(4), 15-42. https://doi.org/10.1177/0008125619867910
    [Google Scholar]
  45. Torka, N., & Bos-Nehles, A. (2019). (Zelf)leiderschap en werkdruk aan Nederlandse universiteiten. Tijdschrift Voor HRM, 22(4), 23–47. https://doi.org/10.5117/thrm2019.4.tork
    [Google Scholar]
  46. Tursunbayeva, A., & Renkema, M. (2023). Artificial intelligence in health-care: implications for the job design of healthcare professionals. Asia Pacific Journal of Human Resources, 61(4), 845-887. https://doi.org/10.1111/1744-7941.12325
    [Google Scholar]
  47. van Leeuwen, K.G., de Rooij, M., Schalekamp, S. et al. Clinical use of artificial intelligence products for radiology in the Netherlands between 2020 and 2022. Eur Radiol34, 348–354 (2024). https://doi.org/10.1007/s00330-023-09991-5
    [Google Scholar]
  48. Vo, V., Chen, G., Aquino, Y. S. J., Carter, S. M., Do, Q. N., & Woode, M. E. (2023). Multi-stakeholder preferences for the use of artificial intelligence in healthcare: A systematic review and thematic analysis. Social Science & Medicine, 338, 116357.
    [Google Scholar]
  49. Wiljer, D., Salhia, M., Dolatabadi, E., Dhalla, A., Gillan, C., Al-Mouaswas, D., Jackson, E., Waldorf, J., Mattson, J., Clare, M., Lalani, N., Charow, R., Balakumar, S., Younus, S., Jeyakumar, T., Peteanu, W., & Tavares, W. (2021). Accelerating the Appropriate Adoption of Artificial Intelligence in Health Care: Protocol for a Multistepped Approach. JMIR research protocols, 10(10), e30940. https://doi.org/10.2196/30940
    [Google Scholar]
  50. World Health Organization: WHO. (2022, September14). Ticking timebomb: Without immediate action, health and care workforce gaps in the European Region could spell disaster [Press release]. https://www.who.int/azerbaijan/news/item/14-09-2022-ticking-timebomb-without-immediate-action--health-and-care-workforce-gaps-in-the-european-region-could-spell-disaster#:~:text=Dr%20Kluge%20warned%2C%20%E2%80%9CAll%20of,care%20workforce%20shortages%20is%20now.
    [Google Scholar]
  51. World Health Organization: WHO. (2023, March22). The health workforce crisis in Europe is no longer a looming threat – it is here and now. The Bucharest Declaration charts a way forward [Press release]. https://www.who.int/azerbaijan/news/item/22-03-2023-the-health-workforce-crisis-in-europe-is-no-longer-a-looming-threat--it-is-here-and-now.-the-bucharest-declaration-charts-a-way-forward
    [Google Scholar]
  52. World Health Organization. (2019, July31). Classifying health workers: Mapping occupations to the international standard classification. https://www.who.int/publications/m/item/classifying-health-workers
  53. Wang, J., Yang, J., Zhang, H. et al. PhenoPad: Building AI enabled note-taking interfaces for patient encounters. npjDigit. Med. 5, 12 (2022). https://doi.org/10.1038/s41746-021-00555-9
    [Google Scholar]
  54. Zhai, H., Yang, X., Xue, J., Lavender, C., Ye, T., Li, J., Xu, L., Lin, L., Cao, W., & Sun, Y. (2021). Radiation Oncologists’ perceptions of Adopting an Artificial Intelligence–Assisted Contouring Technology: Model Development and Questionnaire study. Journal of Medical Internet Research, 23(9), e27122. https://doi.org/10.2196/27122
    [Google Scholar]
/content/journals/10.5117/THRM2025.1.002.SCHO
Loading
/content/journals/10.5117/THRM2025.1.002.SCHO
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error