2004
Volume 141, Issue 4
  • ISSN: 0040-7550
  • E-ISSN: 2212-0521

Abstract

Abstract

The rise of Large Language Models (LLMs) has profound implications for both research and education, also within linguistics. This article explores how chatbots can serve as innovative tools for the didactics of reflection about language and language use. Using concrete examples from interactions with LLMs, it demonstrates how these technologies make the four perspectives on language formulated by the Dutch (2016, 2018) – language as a system, as an individual phenomenon, as a social phenomenon, and as a historical phenomenon – accessible in new and interactive ways. At the same time, working with LLMs in the classroom highlights the fundamental differences between human language processing and the computational approach of LLMs, including criticisms of the nature of their ‘understanding’ and ‘creativity’. The article argues for a critical integration of chatbots into Dutch language and literature education, with an emphasis on ‘conscious literacy’ and experiential learning, and discusses the ethical considerations as well as the shifting role of the Dutch studies scholar in this new landscape.

Loading

Article metrics loading...

/content/journals/10.5117/TNTL2025.4.003.OOST
2025-12-01
2026-01-30
Loading full text...

Full text loading...

References

  1. Aguado-García, Alonso-Muñoz & De-Pablos-Heredero2025 – J.-M.Aguado-García, S.Alonso-Muñoz & C.De-Pablos-Heredero, ‘Using Artificial Intelligence for Higher Education: An Overview and Future Research Avenues’. In: SAGE Open15 (2025) 2; https://doi.org/10.1177/21582440251340352.
    [Google Scholar]
  2. Alhamoud et al.2025 – K.Alhamoud, S.Alshammari, Y.Tian, G.Li, P.Torr, Y.Kim & M.Ghassemi, ‘Vision-Language Models Do Not Understand Negation’. In: arXiv, 2025; https://arxiv.org/abs/2501.09425.
    [Google Scholar]
  3. Bender et al.2021 – E.M.Bender, T.Gebru, A.McMillan-Major & M.Mitchell, ‘On the dangers of stochastic parrots: Can language models be too big?’ In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency. ACM, 2021, p. 610-623.
    [Google Scholar]
  4. Beuls & Van Eecke2024 – K.Beuls & P.Van Eecke, ‘Humans Learn Language from Situated Communicative Interactions: What About Machines?’ In: Computational Linguistics50 (2024) 4, p. 1277-1311.
    [Google Scholar]
  5. Blodgett et al.2020 – S.L.Blodgett, S.Barocas, H.Daumé III & H.Wallach, ‘Language (Technology) Is Power: A Critical Survey of “Bias” in NLP’. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. ACL, 2020, p. 5454-5473.
    [Google Scholar]
  6. Brysbaert2019 – M.Brysbaert, ‘How Many Words Do We Read Per Minute? A Review and Meta-Analysis of Reading Speed Studies’. In: Journal of Experimental Psychology: Applied25 (2019) 4, p. 606-622.
    [Google Scholar]
  7. Cardona1976 – G.Cardona, Pāṇini: A Survey of Research. Mouton, 1976.
    [Google Scholar]
  8. Chomsky1957 – N.Chomsky, Syntactic Structures. Mouton, 1957.
    [Google Scholar]
  9. Chomsky, Roberts & Watumull2023 – N.Chomsky, I.Roberts & J.Watumull, ‘The False Promise of ChatGPT’. In: The New York Times, 8maart2023; https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html.
    [Google Scholar]
  10. Coppen2021 – P.-A.Coppen, ‘Taalbeschouwing, wat is dat? (deel 1)’. In: Werkgroep Onderzoek Didactiek Nederlands (red.), Handboek Didactiek Nederlands. Levende Talen, 2021; https://didactieknederlands.nl/handboek/2021/02/taalbeschouwing-wat-is-dat-deel-1/.
    [Google Scholar]
  11. Ernestus & Baayen2003 – M.Ernestus & R.H.Baayen, ‘Predicting the Unpredictable: Interpreting Neutralized Segments in Dutch’. In: Language79 (2003) 1, p. 5-38.
    [Google Scholar]
  12. Gallegos et al.2024 – I.Gallegos, R.Rossi, J.Barrow, M.Tanjim, S.Kim, F.Dernoncourt, T.Yu, R.Zhang & N.K.Ahmed, ‘Bias and Fairness in Large Language Models: A Survey’. In: Computational Linguistics50 (2024) 3, p. 1097-1179.
    [Google Scholar]
  13. Guldi & Armitage2014 – J.Guldi & D.Armitage, The History Manifesto. Cambridge University Press, 2014.
    [Google Scholar]
  14. Horst & Von Koss Torkildsen2014 – J.S.Horst & J.von Koss Torkildsen, International Handbook of Language Acquisition. Routledge, 2014.
    [Google Scholar]
  15. Kolb1984 – D.A.Kolb, Experiential Learning: Experience as the Source of Learning and Development. Prentice Hall, 1984.
    [Google Scholar]
  16. Labadze, Grigolia & Machaidze2023 – L.Labadze, M.Grigolia & L.Machaidze, ‘Role of AI Chatbots in Education: Systematic Literature Review’. In: International Journal of Educational Technology in Higher Education20 (2023) 56.
    [Google Scholar]
  17. Labov1972 – W.Labov, Sociolinguistic Patterns. University of Pennsylvania Press, 1972.
    [Google Scholar]
  18. Levinson2025 – S.Levinson, The Interaction Engine. Cambridge University Press, 2025.
    [Google Scholar]
  19. Meesterschapsteam Nederlands2016 – Meesterschapsteam Nederlands, Manifest Nederlands op school, 2016; https://vakdidactiekgw.nl/wp-content/uploads/2016/01/Manifest-Nederlands-op-School.pdf.
    [Google Scholar]
  20. Meesterschapsteam Nederlands2018 – Meesterschapsteam Nederlands, Visie op de toekomst van het curriculum Nederlands (versie 1.5), 2018; https://nederlands.vakdidactiekgw.nl/publicaties/.
    [Google Scholar]
  21. Mitchell2021 – M.Mitchell, ‘Why AI Is Harder Than We Think’. In: AI and Society38 (2021) 1, p. 1-14.
    [Google Scholar]
  22. Mulders & Ruys2025 – I.Mulders & E.Ruys, ‘ChatGPT as an Informant’. In: Nota Bene1 (2025) 2, p. 242-260.
    [Google Scholar]
  23. Van Oostendorp & D’Alessandro2025 – M.van Oostendorp & R.D’Alessandro, ‘The Darwinian Mind of the Machine: Rethinking LLM Training as Evolution’ (te verschijnen in Festschrift).
    [Google Scholar]
  24. Owens1988 – J.Owens, The Foundations of Grammar: An Introduction to Medieval Arabic Grammatical Theory. John Benjamins, 1988.
    [Google Scholar]
  25. Piantadosi2024 – S.Piantadosi, ‘Modern Language Models Refute Chomsky’s Approach to Language’. In: E.Gibson & M.Poliak (eds.), From Fieldwork to Linguistic Theory: A Tribute to Dan Everett. Language Science Press, 2024, p. 353-414; https://doi.org/10.5281/zenodo.12665933.
    [Google Scholar]
  26. De Saussure1916 – F.de Saussure, Cours de linguistique générale. Payot, 1916.
    [Google Scholar]
  27. Searle1980 – J.R.Searle, ‘Minds, Brains, and Programs’. In: Behavioral and Brain Sciences, 3 (1980) 3, p. 417-424.
    [Google Scholar]
  28. Van der Sijs2014 – N.van der Sijs, De voortzetting van de historische taalkunde met andere middelen. Radboud Universiteit, 2014.
    [Google Scholar]
/content/journals/10.5117/TNTL2025.4.003.OOST
Loading
/content/journals/10.5117/TNTL2025.4.003.OOST
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Artificial Intelligence; chatbots; didactics; Large Language Models; linguistics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error